Q:如何将数据集划分为测试数据集和训练数据集? A:three ways: 1.像sklearn一样,提供一个将数据集切分成训练集和测试集的函数: 默认是把数据集的75%作为训练集,把数据集的25%作为测试集。 2.交叉验证(一般取十折交叉验证:10-fold cross validation) k个子集,每个子集均做一次测试集,其余的作为训练集。 交叉验证重复k次,每次选择一个子集作为测试集,并将k次的平均交叉验证识别正确率作为结果。 3.训练数据,验证数据(注意区别交叉验证数据集),测试数据(在Coursera上提到) 一般做预测分析时,会将数据分为两大部分。一部分是训练数据,用于构建模型,一部分是测试数据,用于检验模型。但是,有时候模型的构建过程中也需要检验模型,辅助模型构建,所以会将训练数据在分为两个部分:1)训练数据;2)验证数据(Validation Data)。验证数据用于负责模型的构建。典型的例子是用K-Fold Cross Validation裁剪决策树,求出最优叶节点数,防止过渡拟合(Overfitting)。 所以: 训练数据(Test Data):用于模型构建 验证数据(Validation Data):可选,用于辅助模型构建,可以重复使用。 测试数据(Test Data):用于检测模型构建,此数据只在模型检验时使用,用于评估模型的准确率。绝对不允许用于模型构建过程,否则会导致过渡拟合。 references http://www.cnblogs.com/bourneli/archive/2013/03/11/2954060.html http://blog.csdn.net/lhx878619717/article/details/49079785 http://blog.csdn.net/chloezhao/article/details/53502674 https://segmentfault.com/q/1010000005917400

统计学上的交叉验证方法,是为了防止过拟合现象的出现。http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29

——-十折交叉验证:10-fold cross validation——-

英文名叫做10-fold cross-validation,用来测试算法准确性。是常用的测试方法。将数据集分成十分,轮流将其中9份作为训练数据,1份作为测试数据,进行试验。每次试验都会得出相应的正确率(或差错率)。10次的结果的正确率(或差错率)的平均值作为对算法精度的估计,一般还需要进行多次10折交叉验证(例如10次10折交叉验证),再求其均值,作为对算法准确性的估计。

之所以选择将数据集分为10份,是因为通过利用大量数据集、使用不同学习技术进行的大量试验,表明10折是获得最好误差估计的恰当选择,而且也有一些理论根据可以证明这一点。但这并非最终诊断,争议仍然存在。而且似乎5折或者20折与10折所得出的结果也相差无几。

十折交叉验证10-fold cross validation, 数据集划分 训练集 验证集 测试集的更多相关文章

  1. 10折交叉验证(10-fold Cross Validation)与留一法(Leave-One-Out)、分层采样(Stratification)

    10折交叉验证 我们构建一个分类器,输入为运动员的身高.体重,输出为其从事的体育项目-体操.田径或篮球. 一旦构建了分类器,我们就可能有兴趣回答类似下述的问题: . 该分类器的精确率怎么样? . 该分 ...

  2. (数据挖掘-入门-6)十折交叉验证和K近邻

    主要内容: 1.十折交叉验证 2.混淆矩阵 3.K近邻 4.python实现 一.十折交叉验证 前面提到了数据集分为训练集和测试集,训练集用来训练模型,而测试集用来测试模型的好坏,那么单一的测试是否就 ...

  3. 验证控件jQuery Validation Engine调用外部函数验证

    在使用jQuery Validation Engine的时候,我们除了使用自带的API之外,还可以自己自定义正则验证.自定义正则验证上一篇已经讲过了,如果想使用自定义函数进行验证怎么办?其实这个控件有 ...

  4. python,tensorflow,CNN实现mnist数据集的训练与验证正确率

    1.工程目录 2.导入data和input_data.py 链接:https://pan.baidu.com/s/1EBNyNurBXWeJVyhNeVnmnA 提取码:4nnl 3.CNN.py i ...

  5. S折交叉验证(S-fold cross validation)

    S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...

  6. 几种交叉验证(cross validation)方式的比较

    模型评价的目的:通过模型评价,我们知道当前训练模型的好坏,泛化能力如何?从而知道是否可以应用在解决问题上,如果不行,那又是哪里出了问题? train_test_split 在分类问题中,我们通常通过对 ...

  7. 验证和交叉验证(Validation & Cross Validation)

    之前在<训练集,验证集,测试集(以及为什么要使用验证集?)(Training Set, Validation Set, Test Set)>一文中已经提过对模型进行验证(评估)的几种方式. ...

  8. 交叉验证(Cross Validation)原理小结

    交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...

  9. 交叉验证 Cross validation

    来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...

随机推荐

  1. AcWing 227. 小部件厂 (高斯消元)打卡

    题目:https://www.acwing.com/problem/content/description/229/ 题意:有很多个零件,每个零件的生产时间都在3-9天之间,现在只知道每个工人的生产部 ...

  2. php开发面试题---Redis和Memcache区别,优缺点对比

    php开发面试题---Redis和Memcache区别,优缺点对比 一.总结 一句话总结: Redis相当于Memcache的扩展,增加比如持久化.多种数据结构.集群分布式功能 反思的回顾非常有用,因 ...

  3. 为什么NULL能多次free

    void __cdecl _free_base (void * pBlock) {           int retval = 0;             if (pBlock == NULL) ...

  4. C++——模板

    1.参数类型 template <typename T> void f1(T&);//实参必须是左值 f1(i);//对 f1(ci);//对,T的类型是const int f1( ...

  5. linux SMbus错误

    针对piix4_smbus ****host smbus controller not enabled的解决方法 查看文件并用超级权限修改内容 在末尾加入blacklist i2c——piix4 重启 ...

  6. 【C++第一个Demo】---控制台RPG游戏4【角色系统】

    [角色基类] #ifndef _ROLE_H_ #define _ROLE_H_ #include<list> #include<vector> #include " ...

  7. Linux执行Java文件

    最近学习shell脚本,写个简单java类让linux去执行 java类没别的东西,就引了一个fastjson的jar,写了个main方法 序列化一个User对象 打印 package com.lws ...

  8. Linux NIO 系列(04-4) select、poll、epoll 对比

    目录 一.API 对比 1.1 select API 1.2 poll API 1.3 epoll API 二.总结 2.1 支持一个进程打开的 socket 描述符(FD)不受限制(仅受限于操作系统 ...

  9. 三、函数 (SUM、MIN、MAX、COUNT、AVG)

    第八章 使用数据处理函数 8.1 函数 SQL支持利用函数来处理数据.函数一般是在数据上执行的,给数据的转换和处理提供了方便. 每一个DBMS都有特定的函数.只有少数几个函数被所有主要的DBMS等同的 ...

  10. Spring Cloud配置中心高可用搭建

    本文通过config server连接git仓库来实现配置中心,除了git还可以使用svn或者系统本地目录都行. 引入依赖 <dependencies> <dependency> ...