[CodeForces - 1225E]Rock Is Push 【dp】【前缀和】

标签:题解 codeforces题解 dp 前缀和


题目描述

Time limit

2000 ms

Memory limit

524288 kB

Source

Technocup 2020 - Elimination Round 2

Tags

binary search dp *2200

Site

https://codeforces.com/problemset/problem/1225/E

题面

Example

Input1

1 1

.

Output1

1

Input2

2 3

...

..R

Output2

0

Input3

4 4

...R

.RR.

.RR.

R...

Output3

4

题目大意

给定\(n, m\),和一张长宽分别为\(n,m\)的地图。\(\cdot\)代表可以通过,\(R\)代表岩石,无法通过。一个人从左上\((1,1)\)出发,想要到达右下\((n, m)\),他每步只能向下或向右走一格。其间他可以推动与他相邻的一连串岩石一格,根据他从上一步到达这格的方向,但不能将岩石推出地图。问一共有多少条不同的走法?

例如,

\(n = 4, m = 4\),地图为

\[\cdot \cdot \cdot R \\ \cdot R R \cdot \\ \cdot R R \cdot \\ R \cdot \cdot \cdot \\
\]

有如下四条路径,用\(PushD\)代表向下推岩石,用\(PushR\)代表向右推岩石:

  1. \((1,1) \to (2,1) \to(3,1) \to PushR \to(3,2) \to(4,2) \to(4,3) \to(4,4)\)
  2. \((1,1) \to(2,1)\to PushR \to(2,2)\to PushD \to(3,2)\to PushR \to(3,3)\to (4,3)\to (4,4)\)
  3. \((1,1) \to(1,2)\to PushD \to(2,2)\to PushR \to(2,3)\to PushD \to(3,3)\to (3,4)\to (4,4)\)
  4. \((1,1) \to(1,2)\to (1,3)\to PushD \to(2,3)\to (2,4)\to (3,4)\to (4,4)\)

解析

  • 询问从\((1,1)\)走到\((n, m)\)的路径条数,我们也可以反过考虑从\((n, m)\)走到\((1,1)\)的路径条数。

  • 我们令\(dpR[i][j]\)表示从\((i,j)\)的右边一格即从\((i, j + 1)\)到达\((i,j)\)的路径条数,令\(dpD[i][j]\)表示从\((i,j)\)的下边一格即从\((i + 1, j)\)到达\((i,j)\)的路径条数。令\(kD, kR\)分别为从\((i,j)\)到此列最下端和此行最右端的岩石总数。因为岩石可以向右推至地图边缘,所以我们易得$$dpD[i][j] = \sum_{t=i + 1}^{n - kD}dpR[t][j].$$将此列中行坐标在区间\([i+1, n-kD]\)的全部能从右边到达的路径条数都加入\(dpD[i][j]\)中。



    计算\(dpD\)示意图

    同理,我们可得$$dpR[i][j] = \sum_{t=j + 1}^{m - kR}dpD[i][t].$$

  • 为了得到每点的\(kR,kD\),我们需要分别预处理一下每行每列从右至左,从下至上的岩石数量的前缀和。

    \((i,j)\)以右(包括\((i,j)\))的全部岩石数量:\(numR[i][j] = numR[i][j + 1] + (s[i][j] == \,'R')\);

    \((i,j)\)以下(包括\((i,j)\))的全部岩石数量:\(numD[i][j] = numD[i + 1][j] + (s[i][j] == \,'R')\)。



计算岩石总数前缀和

  • 看到如上的累加公式,我们很容易想到要用前缀和来处理。否则时间复杂度会升到立方。

    我们令$$ sumD[i][j] = sumD[i][j + 1] + dpD[i][j], \ sumR[i][j] = sumR[i + 1][j] + dpR[i][j].$$

    则原公式可优化为$$\begin{cases}dpD[n][m] = dpR[n][m] = 1, \dpD[i][j] = \sum_{t=i + 1}^{n - numD[i][j]}dpR[t][j] = sumR[i + 1][j] - sumR[n - numD[i][j] + 1][j], \ dpR[i][j]= \sum_{t=j + 1}^{m - numR[i][j]}dpD[i][t] = sumD[i][j + 1] - sumD[i][m - numR[i][j] + 1] \end{cases}.$$

  • 最后答案即为\(dpD[1][1] + dpR[1][1]\),注意随时取模。

  • 存在两种情况需要特判,详见代码。

以第三个样例为例试举两例,



计算(2,1)的\(dpD\)和\(dpR\)



计算(1,1)的\(dpD\)和\(dpR\)


通过代码

/*
Status
Accepted
Time
108ms
Memory
102804kB
Length
1284
Lang
GNU G++11 5.1.0
Submitted
2019-12-23 18:13:00
RemoteRunId
67463663
*/ #include <bits/stdc++.h>
using namespace std; const int MOD = 1e9 + 7; //随时取模.
const int MAXN = 2e3 + 50; char s[MAXN][MAXN];
int numD[MAXN][MAXN], numR[MAXN][MAXN], sumD[MAXN][MAXN], sumR[MAXN][MAXN], dpD[MAXN][MAXN], dpR[MAXN][MAXN];
int n, m; int main()
{
scanf("%d%d", &n, &m); for(int i = 1; i <= n; i ++)
scanf("%s", s[i] + 1); if(s[1][1] == 'R' || s[n][m] == 'R'){ //第一种特判情况,起点或终点被岩石占上,则没有路径可以到达.
printf("0");
return 0;
} if(n == 1 && m == 1){ //第二种特判情况,地图大小为1*1,则直接输出1.
printf("1");
return 0;
} for(int i = n; i >= 1; i --){ //从右下开始预处理岩石总数前缀和.
for(int j = m; j >= 1; j --){
numD[i][j] = numD[i + 1][j] + (s[i][j] == 'R');
numR[i][j] = numR[i][j + 1] + (s[i][j] == 'R');
}
} sumD[n][m] = sumR[n][m] = dpD[n][m] = dpR[n][m] = 1;
for(int i = n; i >= 1; i --){ //从右下开始状态转移.
for(int j = m; j >= 1; j --){
if(i == n && j == m) continue;
dpD[i][j] = (sumR[i + 1][j] - sumR[n - numD[i + 1][j] + 1][j]) % MOD;
dpR[i][j] = (sumD[i][j + 1] - sumD[i][m - numR[i][j + 1] + 1]) % MOD; sumD[i][j] = (sumD[i][j + 1] + dpD[i][j]) % MOD;
sumR[i][j] = (sumR[i + 1][j] + dpR[i][j]) % MOD;
}
} printf("%d", (dpR[1][1] + dpD[1][1] + 2ll * MOD) % MOD); //得出答案.
return 0;
}

[CodeForces - 1225E]Rock Is Push 【dp】【前缀和】的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp

    E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...

  2. Codeforces 332B Maximum Absurdity(DP+前缀和处理)

    题目链接:http://codeforces.com/problemset/problem/332/B 题目大意:给你n个数和一个整数k,要求找到不相交的两个长度为k的区间,使得区间和最大,输出这两个 ...

  3. Codeforces 1247E. Rock Is Push

    传送门 显然考虑 $dp$ ,设 $fx[i][j]$ 表示从 $(i,j)$ 出发往下走一格,最终到达 $(n,m)$ 的方案数,$fy[i][j]$ 表示从 $(i,j)$ 出发往右走一格,最终到 ...

  4. CodeForces 816B Karen and Coffee(前缀和,大量查询)

    CodeForces 816B Karen and Coffee(前缀和,大量查询) Description Karen, a coffee aficionado, wants to know the ...

  5. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  6. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  7. [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列)

    [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列) 题面 两个人玩游戏,共进行t轮,每人每轮从[-k,k]中选出一个数字,将其加到自己的总分中.已 ...

  8. T2988 删除数字【状压Dp+前缀和优化】

    Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...

  9. [CF467C] George and Job - DP,前缀和

    简单dp + 前缀和 你谷这乱标难度的风气真是-- #include <bits/stdc++.h> using namespace std; #define int long long ...

随机推荐

  1. NoSQL数据库的分布式算法详解

    系统的可扩展性是推动NoSQL运动发展的的主要理由,包含了分布式系统协调,故障转移,资源管理和许多其他特性.这么讲使得NoSQL听起来像是一个大筐,什么都能塞进去.尽管NoSQL运动并没有给分布式数据 ...

  2. 求能粘贴Word 内容(含图片)的在线编辑器

    word图片转存,是指UEditor为了解决用户从word中复制了一篇图文混排的文章粘贴到编辑器之后,word文章中的图片数据无法显示在编辑器中,也无法提交到服务器上的问题而开发的一个操作简便的图片转 ...

  3. jsp文件断点上传

    之前仿造uploadify写了一个HTML5版的文件上传插件,没看过的朋友可以点此先看一下~得到了不少朋友的好评,我自己也用在了项目中,不论是用户头像上传,还是各种媒体文件的上传,以及各种个性的业务需 ...

  4. 0XFF

    0xFF = 00000000000000000000000011111111 也就是说 0xFF 代表了一个 byte 位全为 1,-1的补码(数据). 数值和数据是两个不同的概念.数值表示一个数的 ...

  5. 使div弹窗可拖拽指令

    在项目开发过程中,有些情况dialog弹窗,直接使用div模拟弹窗效果,并需要支持div可拖拽. div模拟弹窗效果: (1)在用于存放指令的文件夹内,新建js文件,命名为:drag.js.具体代码如 ...

  6. http请求方法,get 对比 post

    本文转自:http://www.w3school.com.cn/tags/html_ref_httpmethods.asp 两种最常用的 HTTP 方法是:GET 和 POST. 什么是 HTTP? ...

  7. 140、spring webflux 高并发的spring组件

    最近公司可谓是风云变幻,年前说要拆开卖,后来说要整体卖,表示像我这种渣渣,始终逃脱不掉被卖的命运 下面进入正题 spring webflux 是spring 支持的高并发web框架,将每个http请求 ...

  8. day06—JavaScript之闭包

    转行学开发,代码100天——2018-03-22 第一次听说“闭包”这个词,还是在2015年某个深夜在听一节腾讯课堂的公开课上,当时老师讲什么已经没有清晰的记忆了,只知道是一次web的开发课程. 过了 ...

  9. 【GDAL】聊聊GDAL的数据模型(二)——Band对象

    在GDAL中栅格数据直接参与各种计算的重要对象是Band 摘录官方描述: Raster Band A raster band is represented in GDAL with the GDALR ...

  10. openstack——glance镜像服务

    一.glance介绍:                Glance是Openstack项目中负责镜像管理的模块,其功能包括虚拟机镜像的查找.注册和检索等. Glance提供Restful API可以查 ...