[BZOJ1023][SHOI2008]cactus仙人掌图 DP
套路就是先考虑一般的树上做法。求直径的dp的做法大家应该都会吧。
那么设\(dp[i]\)表示\(i\)的子树中的点到\(i\)的最大距离。
在dp的过程中
dp[i]=max\{dp[i],dp[j]\}
\]
上面的式子要按顺序跑。
然后考虑一个环。不妨假设这个环里面的点都是\(1..m\)。
那么依然有
\]
因为点对的顺序是无所谓的不妨假设\(i>j\)。这里的常规处理方法是断环成链之一,就是把数组再复制一遍,再限定\(i,j\)范围。
因为一定要取\(i,j\)的最短路,所以复制以后一定要有\(i-j\leq n/2\)。如果大于的话可以留到复制以后从\(j\)更新。
那么就相当于一定要取\(i-j\)了。于是上式可化为
\]
显然可以用单调队列转移。
最后环里面更新完答案有还要更新最上面的点的dp值,这个非常好想,就不说了。
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define FEC(i,x,y) for(register int i=head[x],y=g[i].to;i;i=g[i].ne,y=g[i].to)
#define dbg(...) fprintf(stderr,__VA_ARGS__)
const int SZ=(1<<21)+1;char ibuf[SZ],*iS,*iT;
#ifdef ONLINE_JUDGE
#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SZ,stdin),(iS==iT?EOF:*iS++)):*iS++)
#else
#define gc() getchar()
#endif
template<typename I>inline void read(I&x){char c=gc();int f=0;for(;c<'0'||c>'9';c=gc())c=='-'?f=1:0;for(x=0;c>='0'&&c<='9';c=gc())x=(x<<1)+(x<<3)+(c&15);f?x=-x:0;}
template<typename A,typename B>inline char SMAX(A&a,const B&b){return a<b?a=b,1:0;}
template<typename A,typename B>inline char SMIN(A&a,const B&b){return a>b?a=b,1:0;}
typedef long long ll;typedef unsigned long long ull;typedef std::pair<int,int>pii;
const int N=50000+7,M=10000000+7;
int n,m,f[N],dp[N],ans;
struct Edge{int to,ne;}g[M<<1];int head[N],tot;
inline void Addedge(int x,int y){g[++tot].to=y;g[tot].ne=head[x];head[x]=tot;}
int s[N<<1],q[N<<1],hd,tl;
inline void Solve(int x,int rt){
int n=0;hd=1,tl=0;
for(int p=x;f[rt]!=p;p=f[p])s[++n]=p;
reverse(s+1,s+n+1);copy(s+1,s+n+1,s+n+1);n<<=1;
for(int i=1;i<=n;++i){
while(hd<=tl&&i-q[hd]>(n>>2))++hd;
if(hd<=tl)SMAX(ans,dp[s[i]]+dp[s[q[hd]]]+i-q[hd]);
while(hd<=tl&&dp[s[i]]-i>dp[s[q[tl]]]-q[tl])--tl;
q[++tl]=i;
}n>>=1;
for(int i=1;i<=n;++i)SMAX(dp[rt],dp[s[i]]+min(i-1,n-i+1));
}
int dfn[N],low[N],scc[N],sccno,dfc;
inline void Tarjan_dfs(int x,int fa=0){
dfn[x]=low[x]=++dfc;f[x]=fa;
FEC(i,x,y)if(y!=fa){
if(!dfn[y])Tarjan_dfs(y,x),SMIN(low[x],low[y]);
else SMIN(low[x],dfn[y]);
if(low[y]>dfn[x])SMAX(ans,dp[x]+dp[y]+1),SMAX(dp[x],dp[y]+1);
}
FEC(i,x,y)if(f[y]!=x&&dfn[y]>dfn[x])Solve(y,x);
}
int main(){
read(n),read(m);
for(int i=1;i<=m;++i){
int cnt,x,y;read(cnt);read(x);
while(cnt-->1)read(y),Addedge(x,y),Addedge(y,x),x=y;
}
Tarjan_dfs(1);printf("%d\n",ans);
}
[BZOJ1023][SHOI2008]cactus仙人掌图 DP的更多相关文章
- bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图
http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...
- BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3467 Solved: 1438[Submit][Status][Discuss] Descripti ...
- BZOJ1023[SHOI2008]cactus仙人掌图 【仙人掌DP】
题目 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌 图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路. 举例来说 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...
- 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...
- 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)
传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...
- [bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...
- bzoj1023: [SHOI2008]cactus仙人掌图
学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...
随机推荐
- iOS设计模式之适配器模式
一,适配器的定义 定义 将一个类的接口转换成客户希望的另外一个接口.适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作 需求场景 需要使用以前开发的“一些现存的对象”,但是新环境中要求 ...
- [CF1081H]Palindromic Magic
题意:给两个字符串\(a,b\),求出有多少种不同的字符串能通过从第一个串中取出一个回文串,从第二个串中取出一个回文串,按顺序拼接得到. 题解:证明?看官方题解吧 一些定义: 回文串拆分:\(s=ab ...
- 学习日记12、list集合中根据某个字段进行去重复操作
List<T_CusBankCardInfoModel> blist = B_BLL.GetListByCusId(CusIds).Distinct(new ModelComparer() ...
- [CSP-S模拟测试]:轰炸行动(bomb)(塔尖+拓扑排序+语文)
题目描述 战狂也在玩<魔方王国>.他只会征兵而不会建城市,因此他决定对小奇的城市进行轰炸.小奇有n座城市,城市之间建立了$m$条有向的地下通道.战狂会发起若干轮轰炸,每轮可以轰炸任意多个城 ...
- EhCache缓存框架的使用
EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认的CacheProvider. 我们使用EhCache缓存框架主要是为了判断重复Url,每次爬取一个网 ...
- 初步学习JS中的闭包
JS高级程序设计(3rd)中对闭包的定义就是一句话,首先闭包是一个函数,怎样的函数呢?有权访问另一个函数作用域中的变量 的函数.而创建闭包的常见方式就是在一个函数的内部创建另一个函数,就是嵌套函数. ...
- pillow模块快速学习
一.pillow的简单使用 1.安装 方式一: 如果配置了python中的script路径为环境变量,直接cmd中执行如下命令: pip3 install pillow 方式二: 通过编译器环境,如p ...
- 如何在Python中使用Linux epoll
如何在Python中使用Linux epoll 内容 介绍 阻塞套接字编程示例 异步套接字和Linux epoll的好处 epoll的异步套接字编程示例 性能考量 源代码 介绍 从2.6版开始,Pyt ...
- [eclipse相关] 001 - 启动+运行优化
本随笔参考了其他博客内容,且在验证有效之下才或誊抄或摘录或加上自己经验组合而成. 参考博客: 1,http://zwd596257180.gitee.io/blog/2019/04/17/eclips ...
- Windows Server2003 关闭 关机信息、开机ctrl+alt+del
取消CTRL+ALT+DEL win+R 或从"开始"打开"运行",输入gpedit.msc打开"组策略编辑器",依次展开"计算机 ...