[CSP-S模拟测试]:Graph(图论+贪心)
题目描述
给定一张$n$个点$m$条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通你想在这张图上进行若干次旅游,每次旅游可以任选一个点$x$作为起点,再走到一个与 $x$直接有边相连的点$y$,再走到一个与$y$直接有边相连的点$z$并结束本次旅游
作为一个旅游爱好者,你不希望经过任意一条边超过一次,注意一条边不能即正向走一次又反向走一次,注意点可以经过多次,在满足此条件下,你希望进行尽可能多次的旅游,请计算出最多能进行的旅游次数并输出任意一种方案
输入格式
第$1$行两个正整数$n$与$m$,表示全图的点数与边数
下接$m$行,每行两个数字$u$与$v$表示一条边
输出格式
第$1$行一个整数$cnt$表示答案
下接$cnt$行,每行三个数字$x,y$与$z$,表示一次旅游的路线
如有多种旅行方案,任意输出一种即可
样例
样例输入:
4 5
1 2
3 2
2 4
3 4
4 1
样例输出:
2
4 1 2
4 3 2
数据范围与提示
对于前$20\%$的数据,$n\leqslant 10,m\leqslant 20$
对于令$20\%$的数据,$m=n−1$,并且图连通
对于令$10\%$的数据,每个点的度数不超过$2$
对于$100\%$的数据,$n\leqslant 100,000,m\leqslant 200,000$
题解
如果你做过下面这两道题的其中一道,这道题就会显得简单多了:
题不一样,但是思路是类似的。
对于树和链,我们显然是从叶子节点开始一定最优。
那么考虑一般情况,利用上面那两道题的思路(尤其是虎),也有点类似无修支配树,总之都是贪心……
时间复杂度:$\Theta(n)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
struct rec{int nxt,to;}e[400001];
struct node{int x,y,z;};
int head[100001],cnt=1;
int n,m;
int depth[100001];
vector<node> ans;
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
int dfs(int x)
{
int res=0;
for(int i=head[x];i;i=e[i].nxt)
{
if(!depth[e[i].to])
{
depth[e[i].to]=depth[x]+1;
int flag=dfs(e[i].to);
if(flag)ans.push_back((node){flag,e[i].to,x});
else
{
flag=e[i].to;
if(res){ans.push_back((node){flag,x,res});res=0;}
else res=flag;
}
}
else
{
if(depth[e[i].to]>depth[x])
{
int flag=e[i].to;
if(flag)
{
if(res){ans.push_back((node){flag,x,res});res=0;}
else res=flag;
}
}
}
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
for(int i=1;i<=n;i++)
if(!depth[i])
{
depth[i]=1;
dfs(i);
}
printf("%d\n",ans.size());
for(int i=0;i<ans.size();i++)printf("%d %d %d\n",ans[i].x,ans[i].y,ans[i].z);
return 0;
}
rp++
[CSP-S模拟测试]:Graph(图论+贪心)的更多相关文章
- [CSP-S模拟测试]:Blue(贪心)
题目描述 $Blue$是个动物学家,不仅喜欢研究猫和老鼠,还喜欢研究青蛙.他最近开始研究青蛙过河的问题,可以简化成:数轴上$0$为岸边,$L$为河对岸.$(0,L)$中间存在$n$个石子.已知青蛙一跳 ...
- [CSP-S模拟测试]:爬(贪心)
题目传送门(内部题134) 输入格式 第一行两个数$N,L$. 接下来$N$行每行两个数$A_i,B_i$. 接下来$N$行每行一个整数$C_i$. 输出格式 一行一个整数表示答案,无解输出$-1$. ...
- [CSP-S模拟测试]:午餐(贪心+最短路)
题目传送门(内部题115) 输入格式 第一行两个正整数$n,m$. 接下来$m$行,每行$4$个正整数$u_j,v_j,L_j,R_j$. 接下来一行$n$个数,若第$i$个数为$1$,则$i$号同学 ...
- [CSP-S模拟测试]:格式化(贪心)
题目传送门(内部题105) 输入格式 每组数据第一行一个正整数$n$,表示硬盘块数,接下来$n$行,每行两个正整数,第一个正整数为硬盘格式化前的容量,第二个正整数为格式化之后的容量. 输出格式 对每组 ...
- [CSP-S模拟测试]:优化(贪心+DP)
题目描述 $visit\text{_}world$发现有下优化问题可以用很平凡的技巧解决,所以他给你分享了这样一道题:现在有长度为$N$的整数序列$\{ a_i\}$,你需要从中选出$K$个不想叫的连 ...
- [CSP-S模拟测试]:梦境(贪心+小根堆)
题目描述 智者奥尔曼曾说过:有缘的人即使相隔海角天涯,也会在梦境中相遇. $IcePrince\text{_}1968$和$IcePrincess\text{_}1968$便是如此.有一天$IcePr ...
- [CSP-S模拟测试]:d(贪心+树状数组)
题目传送门(内部题65) 输入格式 第一行,一个自然数$T$,代表数据组数.对于每组数据:第一行,一个正整数$n$,一个自然数$m$.接下来$n$行,每行两个正整数,$a_i,b_i$. 输出格式 对 ...
- [CSP-S模拟测试]:Tree(贪心)
题目描述 给定一颗$n$个点的树,树边带权,试求一个排列$P$,使下式的值最大 $$\sum \limits_{i=1}^{n-1}maxflow(P_i,P_{i+1})$$ 其中$maxflow( ...
- [CSP-S模拟测试]:赛(贪心+三分)
题目描述 由于出题人思维枯竭所以想不出好玩的背景.有$n$个物品,第$i$个物品的价格是$v_i$,有两个人,每个人都喜欢$n$个物品中的一些物品.要求选出正好$m$个物品,满足选出的物品中至少有$k ...
随机推荐
- 【HANA系列】SAP HANA计算视图(calculation views)使用RANK报错
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA计算视图(cal ...
- 【EWM系列】SAP EWM Warehouse Order Creation
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[EWM系列]SAP EWM Warehouse ...
- Where we love is home, home that our feet may leave, but not our hearts.
parcel.n. 包裹 endurance.n.耐力 rot.v.腐烂 ornament.n.装饰 pinch.v.捏 nationality.n.国家 sunshine.n.阳光 stagger. ...
- openstack 制作镜像以及windows向Linux中通过xshell传文件
慢慢的也要把openstack一些相关的笔记整理上来了 之前由于主要是在看horizon 实验室搭建的openstack平台并没有怎么实际的用起来,前几天别的同学要用来测试大数据的相关服务,才把这些内 ...
- 十二、支持向量机(Support Vector Machines)
12.1 优化目标 参考视频: 12 - 1 - Optimization Objective (15 min).mkv 到目前为止,你已经见过一系列不同的学习算法.在监督学习中,许多学习算法的性能都 ...
- webpack搭建vue项目开发环境【文档向学习】
为何有这篇文章 各个社区已经有无数篇帖子介绍如何使用webpack搭建前端项目,但无论是出于学习webpack的目的还是为了解决工作实际需要都面临着一个现实问题,那就是版本更新.别人的帖子可能刚写好版 ...
- P1522 牛的旅行 (Floyd)
[题目描述] 请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径.输出在所有牧场中最小的可能的直径. [题目链接] https://www.luogu.org/pr ...
- Flutter 初探 -
flutter 安装 经过许久的关注,及最近google算是真正地推行flutter时,加上掘金小册也有相应的教程,我知道自己得跟着这一波潮流学习了,不然迟早会面临着小程序的危(大家都会了就你不会), ...
- load 和 initialize 的区别
官方文档 Apple的官方文档很清楚地说明了 initialize 和 load 的区别在于: load 是只要类所在文件被引用就会被调用,而 initialize 是在类或者其子类的第一个方法被调用 ...
- day01-html
HTML概述: HTML: Hyper Text Markup Language 超文本标记语言 超文本: 比普通文本功能更加强大,可以添加各种样式 标记语言: 通过一组标签.来对内容进行描述. &l ...