Decision Tree Algorithm
Decision Tree算法的思路是,将原始问题不断递归地细分为子问题,直到子问题直接可获得答案为止。在模型训练的过程中,根据训练集去做树的生长(Grow the tree),生长所有可能的Branches,最终达到叶子节点(leaf nodes)。在预测过程中,则遍历树枝,去寻找和预测目标最相近的叶子。
构建决策树模型:
而在构建过程中的主要问题是,选择数据集的哪个feature来做分割。这里用到了Greedy Search。形象地说,每走一步,都选择当前情况下最好的路径,而不管下一步如何或几步之后如何。那么,定义什么是“最好”,有三个标准:ID3,C4.5和Gini index。
ID3:计算信息增益(Information Gain),即分割前后熵值的差,差值越大,则我们在分割过程中,获得的信息量就越大:
Entropy of the target datase:

Information Gain by a split:

C4.5:和ID3相似,但采取的是信息增益率(Information Gain Ratio),避免了通过将数据集分割为无限多个从而获得最大信息增益的极限情况:
切割信息量(feature_A将集合S分割为若干个sj):

信息增益率=信息增益/切割信息量

在ID3和C4.5算法中,构建树时需要选择Information Gain或Gain Ratio最大的feature.
CART:与前面两种算法不同,CART计算的是Gini系数。Gini如果为0,说明集合纯净,Gini大则说明集合离散度高。所以我们选择,使Gini系数最小的feature来生成枝叶。同时,在算法比较中,Gini算法没有logrithm的存在,计算速度会更快:

选择ID3, C4.5和CART中的一个标准来递归的生成树,即可完成建模。
利用决策树做预测:
在预测时,根据target example的feature取值,在现有决策树的枝叶路径中搜寻最匹配的路径。如果存在相同的路径,perfect!直接找出输出值。如果不存在,卡在了某个分叉路口,那么就对该分岔路口下的所有节点进行投票,来取得最大可能性的输出值。
问题思考:
如果我的Training Set足够大,同时其多样性也足够,那么在训练过程中生成的决策树就会枝叶茂盛、十分复杂。同时带来的问题就是,过于细枝末节的决策树,会完美拟合训练集,但对于测试集的预测会大打折扣。这是典型的Overfitting,这时就要对决策树进行修剪,具体原理请见下篇博文。
Decision Tree Algorithm的更多相关文章
- 机器学习技法:09 Decision Tree
Roadmap Decision Tree Hypothesis Decision Tree Algorithm Decision Tree Heuristics in C&RT Decisi ...
- 机器学习技法笔记:09 Decision Tree
Roadmap Decision Tree Hypothesis Decision Tree Algorithm Decision Tree Heuristics in C&RT Decisi ...
- Decision Tree
Decision Tree builds classification or regression models in the form of a tree structure. It break d ...
- Spark MLlib - Decision Tree源码分析
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...
- Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较
DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...
- OpenCV码源笔记——Decision Tree决策树
来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...
- (转)Decision Tree
Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游 ...
- CART分类与回归树与GBDT(Gradient Boost Decision Tree)
一.CART分类与回归树 资料转载: http://dataunion.org/5771.html Classification And Regression Tree(CART)是决策 ...
- [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest)
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支 ...
随机推荐
- Appscan工作原理详解
AppScan,即 AppScan standard edition.其安装在 Windows 操作系统上,可以对网站等 Web 应用进行自动化的应用安全扫描和测试. Rational AppScan ...
- 7、 正则化(Regularization)
7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fittin ...
- D Makoto and a Blackboard
Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- C# <T>泛型的使用
在定义泛型类时,可以对客户端代码能够在实例化类时用于类型参数的类型种类施加限制.如果客户端代码尝试使用某个约束所不允许的类型来实例化类,则会产生编译时错误.这些限制称为约束.约束是使用 where 上 ...
- Vue Cli3 TypeScript 搭建工程
Vue Cli3出来也一段时间了,我想尝试下Vue结合TypeScript搭建个工程,感受下Vue下用TS...网上有一篇讲的非常详细的教程 vue-cli3.0 搭建项目模版教程(ts+vuex+ ...
- TensorFlow——CNN卷积神经网络处理Mnist数据集
CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...
- spring+mybatis+log4j 输出SQL
1.在mybatis-config.xml配置中添加setting配置参数,会打印SQL执行结果 <?xml version="1.0" encoding="UTF ...
- 插头$DP$学习小结
插头\(DP\)学习小结 这种辣鸡毒瘤东西也能叫算法... 很优秀的一个算法. 最基本的适用范围主要是数据范围极小的网格图路径计数问题. 如果是像\(Noi2018\)那种的话建议考生在其他两道题难度 ...
- kafka docker-composer.yml
使用Docker快速搭建Kafka开发环境 表现力 关注 0.5 2018.05.04 03:00* 字数 740 阅读 25240评论 1喜欢 11 Docker在很多时候都可以帮助我们快速搭建想 ...
- MAN VGEXTEND
VGEXTEND(8) VGEXTEND(8) NAME/名称 vgexten ...