最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS
Lintcode 77. 最长公共子序列
LCS问题是求两个字符串的最长公共子序列
\left\{\begin{matrix}
& max(dp[i-1][j], dp[i][j-1]), s[i] != s[j]\\
& dp[i-1][j-1] + 1, s[i] == s[j]
\end{matrix}\right.
\]
许多问题可以变形为LCS问题以求解
class Solution {
public:
/**
* @param A: A string
* @param B: A string
* @return: The length of longest common subsequence of A and B
*/
int longestCommonSubsequence(string &A, string &B) {
// write your code here
int n = A.size();
int m = B.size();
std::vector<vector<int>> dp(m+1, vector<int>(n+1, 0)) ;
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
if(A[i-1] == B[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
return dp[m][n];
}
};
因为dp[i][j]仅仅用到了i-1和i层的数据,因此可以用滚动数组来压缩空间,使得空间复杂度为\(O(min(m,n))\)
class Solution {
public:
/**
* @param A: A string
* @param B: A string
* @return: The length of longest common subsequence of A and B
*/
int longestCommonSubsequence(string &A, string &B) {
// write your code here
int n = A.size();
int m = B.size();
std::vector<vector<int>> dp(2, vector<int>(n+1, 0)) ;
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
if(A[i-1] == B[j-1]) dp[i%2][j] = dp[(i-1)%2][j-1] + 1;
else dp[i%2][j] = max(dp[(i-1)%2][j], dp[i%2][j-1]);
}
}
return dp[m%2][n];
}
};
最长递增子序列LIS
300. Longest Increasing Subsequence
动态规划
可以假定dp[i]为以nums[i]结尾的LIS长度,则dp[i] = max(dp[j] + 1)( j<i 且 nums[j] < nums[i]), 时间复杂度为\(O(n^2)\),时间复杂度为\(O(n)\)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n, 1);
int MAX = 0;
for(int i = 0; i < n; i++){
for(int j = 0; j < i; j++){
if(nums[i] > nums[j]) dp[i] = max(dp[j] + 1, dp[i]);
}
MAX = max(MAX, dp[i]);
}
return MAX;
}
};
贪心+二分
首先我们设置一个辅助数组v,其中v[i]表示长度为i-1的LIS的末尾值,首先扫描原数组,当处理到nums[i]时和v中的数据比较,二分查找最后一个比nums[i]小的值,并更换,如果不存在,则加入到末尾,v最后的长度就是原数组LIS的长度,时间复杂度\(nlgn\)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> v;
for(int i = 0; i < n; ++i){
auto loc = lower_bound(v.begin(), v.end(), nums[i]);
if(loc == v.end()) v.push_back(nums[i]);
else *loc = nums[i];
}
return v.size();
}
};
如果仅仅是求LIS长度和允许改变原数组,空间复杂度可降低为\(O(1)\)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
auto p = nums.begin();
auto q = nums.begin();
for(int i = 0; i < n; i++){
auto r = lower_bound(p, q, nums[i]);
if(r == q){ ++q; }
*r = nums[i];
}
return q - p;
}
};
LIS与LCS的相互转化
LIS问题可以变形为LCS问题,如输入数组为[5,1,4,2,3],最长递增子序列为[1,2,3],可以先将原数组排序得到一个新数组[1,2,3,4,5],然后新数组与原数组作为LCS的输入求解, 时间复杂度为\(O(n^2)\), 空间复杂度为\(O(n^2)\)
LCS问题也可变为LIS问题,假定输入数组为数字数组如A=[1,7,5,4,8,3,9], B=[1,4,3,5,6,2,8,9],且在A,B两个序列中每个元素各不相同(如1-n的排列),如果使用LCS求解最长公共子序列长度,则复杂度为\(O(n^2)\),A,B两个序列中每个元素各不相同,因此我们可以将A重新编码A=[1,2,3,4,5,6,7](编码不重复), B可以编码为B=[1,4,6,3,0,0,5,7](0表示不存在,也可以直接删除),然后求重新编码后A,B的LIS长度,时间复杂度为\(O(nlgn)\)
LCS与最长回文子序列LPS及变种
求S的最长回文子序列也可以使用LCS的思想,先将S反转得到S',然后求LCS(S,S')
leetcode 516. Longest Palindromic Subsequence
class Solution {
public:
int lcs(string &A, string &B) {
int n = A.size();
int m = B.size();
std::vector<vector<int>> dp(m+1, vector<int>(n+1, 0)) ;
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
if(A[i-1] == B[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
return dp[m][n];
}
int longestPalindromeSubseq(string s) {
string t(s.rbegin(), s.rend());
return lcs(s, t);
}
};
变种:求在S中任何位置插入或删除最少字符个数使得S成为回文串
解法:先求最长回文子序列,然后用原长度-LPS长度
不求长度求原序列
参考
- LIS算法: 最长上升子序列
- 算法竞赛入门经典-例题27:王子与公主
- 算法导论第三版思考题15-2
最长回文子序列LCS,最长递增子序列LIS及相互联系的更多相关文章
- hdu 3068 最长回文(manachar求最长回文子串)
题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...
- hdu 3068 最长回文(manacher&最长回文子串)
最长回文 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- 51NOD 1088 最长回文子串&1089 最长回文子串 V2(Manacher算法)
回文串是指aba.abba.cccbccc.aaaa这种左右对称的字符串. 输入一个字符串Str,输出Str里最长回文子串的长度. Input 输入Str(Str的长度 <= 1000(第二题要 ...
- HDU 3068 最长回文 (Manacher最长回文串)
Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等 Input 输 ...
- 最长回文子序列/最长回文子串(DP,马拉车)
字符子串和字符子序列的区别 字符字串指的是字符串中连续的n个字符:如palindrome中,pa,alind,drome等都属于它的字串 而字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符: ...
- LeetCode-求最长回文子序列
题目:给定一个字符串,求它的最长回文子串 /*求最长回文子串,以当前字符为中心,向两边同时拓展*/ string longestPalindrome(string s) { int len = s.l ...
- leetcode-5 最长回文子串(动态规划)
题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...
- Manacher算法:求解最长回文字符串,时间复杂度为O(N)
原文转载自:http://blog.csdn.net/yzl_rex/article/details/7908259 回文串定义:"回文串"是一个正读和反读都一样的字符串,比如&q ...
- 使用manacher算法解决最长回文子串问题
要解决的问题 求一个字符串最长回文子串是什么.且时间复杂度 O(N) 具体描述可参考: LeetCode_5_最长回文子串 LintCode_200_最长回文子串 暴力解法 以每个字符为中心向左右两边 ...
- 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题
先要搞明白:最长公共子串和最长公共子序列的区别. 最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...
随机推荐
- Python浮点型数据小数点的取舍
python默认的是17位小数的精度 1.round()内置方法 π=3.1415926535 new_num=round(π,2) #四舍五入保留两位小数 print(new_num) ...
- docker镜像的仓库
一.docker镜像的仓库 --- repos-registry的创建: 仓库分为公共仓库和私有仓库 DockerHub的官方仓库 https://hub.docker.com DockerPool社 ...
- configparser模块,subprocess 模块,xlrd,xlwt ,xml 模块,面向对象
1. configparser模块 2.subprocess 模块 3.xlrd,xlwt 4.xml 模块 5.面向对象 面向对象是什么? 是一种编程思想,指导你如何更好的编写代码 关注点在对象 具 ...
- Java十大bug之——包冲突
找bug就像破案,有的bug简单,有的bug复杂,还有的bug隐藏的令人难以发现. 一个逻辑上看起来一切都正常,结果确有问题,且怎么分析都感觉自己写的没问题的情况——包冲突 遇到这个bug最开始没有任 ...
- 设置mysql 5.7 可以外部访问的办法
这里记录一下. 一台服务器上面的mysql出现了 无法外面连的情况解决办法: . 先尝试在宿主机上面登录 mysql -uroot -p 输入密码,可以登录. 然后 use mysql # 切换数据库 ...
- 【0.2】【MySQL】常用监控指标及监控方法(转)
[MySQL]常用监控指标及监控方法 转自:https://www.cnblogs.com/wwcom123/p/10759494.html 对之前生产中使用过的MySQL数据库监控指标做个小结. ...
- Hanlp配置自定义词典遇到的问题与解决方法
本文是整理了部分网友在配置hanlp自定义词典时遇到的一小部分问题,同时针对这些问题,也提供另一些解决的方案以及思路.这里分享给大家学习参考. 要使用hanlp加载自定义词典可以通过修改配置文件han ...
- SVN随笔记录(一)
svn是版本控制系统 为何使用svn? ~团队在开发同一个项目时对项目进行模块划分,在第一阶段结束后进行部分整合时,提交至服务器上合并. ~多人对同一版本的同一代码进行修改后,合并时会出现冲突,此是需 ...
- 版本控制器之SVN(二)
安装重启以后,在菜单栏找到TortoiseSVN程序 启动以后 点击: 填写相应的信息: 可以看到项目的相关信息 选中仓库,右键 > Browse Repository 进入如下界面: 可以打开 ...
- Lock Puzzle CodeForces - 936C (构造)
大意: 给定字符串$s$,$t$, 每次操作可以将$S=AB$变为$S=B^RA$, 要求$3n$次操作内将$s$变为$t$. #include <iostream> #include & ...