题意

给定一个有 \(N\) 个点 \(M\) 条边的无向图, 每条无向边 最多只能经过一次 .

对于边 \((u, v)\) , 从 \(u\) 到 \(v\) 的代价为 \(a\) , 从 \(v\) 到 \(u\) 的代价为 \(b\) , 其中 \(a\) 和 \(b\) 不一定相等.

求一个包含 \(1\) 号点的有向环, 使得环上代价之和最小.

\(N \le 3 \times 10^4 , M \le 10^5 , 1 \le a, b \le 10^4\) , 保证没有重边和自环 .

题解

考虑一条包含 \(1\) 的有向环, 一定是 \(1 \to x \to \cdots \to y \to 1\) 这样子. \((x \not = y)\)

那么我们可以考虑一个很显然的暴力:枚举 \(x, y\) 然后做最短路, 但是这样显然太慢了.

但是这里的最短路是可以 “并行” 地求的. 也就是说, 如果给定两个不相交的点集 \(\mathcal{A}, \mathcal{B}\) , 那么我们可以用一次最短路的时间求出所

有点对 \((x, y)\) 满足 \(x \in \mathcal{A}, y \in \mathcal{B}\) 的最短路的最小值.

具体地, 我们把 \(1\) 号点拆成两个点, 一个作为源点只连向 \(\mathcal{A}\) 中的点, 另一个作为汇点只被 \(\mathcal{B}\) 中的点连向.

然后这里需要一个二进制拆分的技巧: 在与 \(1\) 相邻的那些点中,每次考虑它们二进制下的第 \(k\) 位, 将这一位为 \(0\) 的放入 \(A\) , 为 \(1\) 的放入 \(\mathcal{B}\) , 那么只需 \(\log N\) 次, 我们便可以考虑到每一对.

以上全部摘自 __debug 的 PPT 。

这个最短路可以用 Spfa 求,但实测要比 Dijkstra 慢几倍。。为了求稳,还是用 Dijkstra 吧233

所以最后的复杂度就是 \(\mathcal O((N + M) \log^2 N)\)

总结

对于一类考虑点对贡献,并且很多对可以并行求,且重复计算没有影响的问题,能考虑二进制拆分技巧,对于每一位分别考虑。

将整体分成两组,最后计算贡献,能大幅度降低时间复杂度。

新套路 get

代码

特别好写233

#include <bits/stdc++.h>

#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#define fir first
#define sec second
#define mp make_pair using namespace std; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("2069.in", "r", stdin);
freopen ("2069.out", "w", stdout);
#endif
} const int N = 5010, M = 10100 * 2, inf = 0x7f7f7f7f; int Head[N], Next[M], to[M], val[M], e = 0; inline void add_edge(int u, int v, int w) { to[++ e] = v; Next[e] = Head[u]; Head[u] = e; val[e] = w; } priority_queue<pair<int, int> > P;
int dis[N], S, T; bitset<N> vis; int Dijkstra() {
Set(dis, inf); dis[S] = 0; P.push(mp(0, S)); vis.reset();
while (!P.empty()) {
int u = P.top().sec; P.pop(); if (vis[u]) continue ; vis[u] = true;
for (int i = Head[u]; i; i = Next[i]) {
int v = to[i]; if (chkmin(dis[v], dis[u] + val[i])) P.push(mp(- dis[v], v));
}
}
return dis[T];
} struct Edge { int u, v, a, b; } lt[M]; int n, m;
void Rebuild(int cur, int flag) {
Set(Head, 0); e = 0; S = 1; T = n + 1; For (i, 1, m) {
int u = lt[i].u, v = lt[i].v, a = lt[i].a, b = lt[i].b;
if (u == 1) {
if ((v & cur) ^ flag) add_edge(S, v, a);
else add_edge(v, T, b);
} else add_edge(u, v, a), add_edge(v, u, b);
}
} int main () { File(); n = read(); m = read();
For (i, 1, m) {
int u = read(), v = read(), a = read(), b = read();
if (u > v) swap(u, v), swap(a, b);
lt[i] = (Edge) {u, v, a, b};
} int ans = inf;
for (int bit = 1; bit <= n; bit <<= 1) {
Rebuild(bit, 0), chkmin(ans, Dijkstra());
Rebuild(bit, bit), chkmin(ans, Dijkstra());
} printf ("%d\n", ans); return 0;
}

BZOJ 2069: [POI2004]ZAW(Dijkstra + 二进制拆分)的更多相关文章

  1. BZOJ 2069 POI2004 ZAW 堆优化Dijkstra

    题目大意:给定一张无向图.每条边从两个方向走各有一个权值,求从点1往出走至少一步之后回到点1且不经过一条边多次的最短路 显然我们须要从点1出发走到某个和点1相邻的点上,然后沿最短路走到还有一个和点1相 ...

  2. BZOJ.2069.[POI2004]ZAW(最短路Dijkstra 按位划分)

    题目链接 \(Description\) 给定一张带权图(边是双向的,但不同方向长度不同).求从1出发,至少经过除1外的一个点,再回到1的最短路.点和边不能重复经过. \(n\leq5000,m\le ...

  3. 【刷题】BZOJ 2069 [POI2004]ZAW

    Description 在Byte山的山脚下有一个洞穴入口. 这个洞穴由复杂的洞室经过隧道连接构成. 洞穴的入口是一条笔直通向"前面洞口"的道路. 隧道互相都不交叉(他们只在洞室相 ...

  4. 2069: [POI2004]ZAW

    2069: [POI2004]ZAW 链接 题意: 给定一张带权图(边是双向的,但不同方向长度不同).求从1出发,至少经过除1外的一个点,再回到1的最短路.点和边不能重复经过. n≤5000,m≤10 ...

  5. bzoj 2096 [POI2004]ZAW——二进制枚举

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2069 可以把直接相连的点分成  从1点出的一部分  和  走向1点的一部分.多起点最短路就和 ...

  6. BZOJ2069: [POI2004]ZAW

    2069: [POI2004]ZAW Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 303  Solved: 138[Submit][Status][D ...

  7. 【最短路】【dijkstra】【二进制拆分】hdu6166 Senior Pan

    题意:给你一张带权有向图,问你某个点集中,两两结点之间的最短路的最小值是多少. 其实就是dijkstra,只不过往堆里塞边的时候,要注意塞进去它是从集合中的哪个起始点过来的,然后在更新某个点的答案的时 ...

  8. hdu 2844 coins(多重背包 二进制拆分法)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  9. HDU 4135:Co-prime(容斥+二进制拆分)

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

随机推荐

  1. python-边练边学

    #换行print(a),print(b),print(c)'''以上是不换行打印以下是换行打印'''print(a)print(b)print(c) #注释#python中的注释有三种方式:单行注释 ...

  2. Mongo安装与使用

    MongoDB[1]  是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. mongoDB MongoDB[2]  是一个介于关系数据库和非关系数 ...

  3. 极验3.0滑动拼图验证的使用--java

    [ 前言: 在登录其他网站的时候,看到有个滑动拼图的验证觉得挺好玩的,以前做一个图片验证的小demo,现在发现很多网站都开始流行滑动拼图的验证了,今天也想自己动手来弄一个. 废话不多说,开始撸起来! ...

  4. 剑指offer(11)

    题目: 输入一个链表,输出该链表中倒数第k个结点. 思路: 我们一先想到的应该是循环两次链表,第一次获得它的长度,然后用长度-k,得出目标节点在链表的第几位,再循环一次. 如果要求只用一次循环的话,我 ...

  5. windows浏览器访问虚拟机开的rabbitmq服务,无法访问

    根据这个博主的建议 https://blog.csdn.net/csdnliuxin123524/article/details/78207427 换了一个浏览器上火狐浏览器输入“localhost: ...

  6. Struts2——通配符,Action Method_DMI

    Action wildcard 通配符(配置量降到最低) 使用通配符,就是为了配置简便,但是一定遵守“约定优于配置”原则,约定就是做项目之前最好事先与项目组的人或是自己规定好命名规则. 多个*  {1 ...

  7. python爬虫之MongoDB测试环境安装

    一.   下载 从http://www.mongodb.org/downloads地址中下载:mongodb-linux-x86_64-2.4.11.tar 二.  安装 1>设置mongoDB ...

  8. Windows 10 & change DNS

    Windows 10 & change DNS https://www.windowscentral.com/how-change-your-pcs-dns-settings-windows- ...

  9. python 字符串常用操作方法

    python 字符串常用操作方法 python 字符串操作常用操作,如字符串的替换.删除.截取.赋值.连接.比较.查找.分割等 1.去除空格 str.strip():删除字符串两边的指定字符,括号的写 ...

  10. 用织梦建站如何去掉a这个目录,还有内容页的a

    1.另外建一个站点,将物理路径直接指向a即可. 2.去掉文章页生成的带a的路径: 只需要这一句话:  function='str_replace("/a","" ...