题目大意

​  一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当:

​  长度为给定的\(n\)。

​  \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数。

​  \(a_1,\ldots,a_n\)互不相等。

​  一个序列的值定义为它里面所有数的乘积,即\(a_1\times a_2\times\cdots\times a_n\)。

  求所有不同合法序列的值的和。

​  两个序列不同当且仅当他们任意一位不一样。

​  输出答案对一个数\(p\)取余的结果。

  \(n\leq500,m\leq {10}^9,p\leq{10}^9,n+1<m<p\)且\(p\)是质数。

题解

​  这题做法很多种。

​  设\(f_{i,j}\)为前\(i\)个数中选\(j\)个数的所有方案的值的和,容易得到递推式:\(f_{0,0}=1,f_{i,j}=f_{i-1,j-1}\times i\times j+f_{i-1,j}\)。最后\(ans=f_{m,n}\)。但是这题\(m\)很大,不能直接求出答案。怎么办呢?

​  我们先打个表:

\(f\) \(0\) \(1\) \(2\)
\(0\) \(1\) \(0\) \(0\)
\(1\) \(1\) \(1\) \(0\)
\(2\) \(1\) \(3\) \(4\)
\(3\) \(1\) \(6\) \(22\)
\(4\) \(1\) \(10\) \(70\)
\(5\) \(1\) \(15\) \(170\)
\(6\) \(1\) \(21\) \(350\)

​  什么?你看不出来?

\(f\) \(0\) \(1\) \(2\)
\(0\) \(1\) \(0\) \(0\)
\(1\) \(1\) \(i\) \(0\)
\(2\) \(1\) \(2i-1\) \(2i^2-2i\)
\(3\) \(1\) \(3i-3\) \(6i^2-12i+4\)
\(4\) \(1\) \(4i-6\) \(12i^2-36i+22\)
\(5\) \(1\) \(5i-10\) \(20i^2-80i+70\)
\(6\) \(1\) \(6i-15\) \(30i^2-150i+170\)

  你还是看不出来?那我就直接告诉你吧。\(f_{i,0}=1,f_{i,1}=\frac12i^2-\frac12i,f_{i,2}=\frac14i^4+\frac16i^3-\frac14i^2-\frac16i\)。我们会发现,\(f_{i,j}\)是一个最高次项为\(2j\)的多项式,也就是说,\(f_{m,n}\)是一个最高次项为\(2n\)的多项式。我们只用求出\(0\)到\(2n\)次项的系数就可以求答案了。我们可以把前面\(0\)~\(2n\)个\(f_{i,n}\)求出来,就可以用拉格朗日插值插出多项式了。

​  这道题因为是求某一个点的值,并不要求求出多项式,而且\(x\)取的是\([0,2n]\),所以可以\(O(n)\)求出答案。然而并没有什么用,因为前面的DP已经是\(O(n^2)\)的了。

​  时间复杂度:\(O(n^2)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
ll p;
ll f[1010][1010];
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
int main()
{
int n,m;
scanf("%d%d%lld",&m,&n,&p);
int i,j;
memset(f,0,sizeof f);
f[0][0]=1;
for(i=1;i<=2*n;i++)
{
f[i][0]=f[i-1][0];
for(j=1;j<=n;j++)
f[i][j]=(f[i-1][j-1]*i%p*j+f[i-1][j])%p;
}
if(m<=2*n)
{
printf("%lld\n",f[m][n]);
return 0;
}
ll ans=0;
for(i=0;i<=2*n;i++)
{
ll s1=1,s2=1;
for(j=0;j<=2*n;j++)
if(j!=i)
{
s1=(s1*(m-j))%p;
s2=(s2*(i-j))%p;
}
ans=(ans+f[i][n]*s1%p*fp(s2,p-2)%p)%p;
}
ans=(ans%p+p)%p;
printf("%lld\n",ans);
return 0;
}

【BZOJ2655】calc DP 数学 拉格朗日插值的更多相关文章

  1. 2019.02.19 bzoj2655: calc(生成函数+拉格朗日插值)

    传送门 题意简述:问有多少数列满足如下条件: 所有数在[1,A][1,A][1,A]之间. 没有相同的数 数列长度为nnn 一个数列的贡献是所有数之积,问所有满足条件的数列的贡献之和. A≤1e9,n ...

  2. BZOJ2655 Calc - dp 拉格朗日插值法

    BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...

  3. BZOJ2655 calc(动态规划+拉格朗日插值法)

    考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考 ...

  4. 51nod1229-序列求和V2【数学,拉格朗日插值】

    正题 题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1229 题目大意 给出\(n,k,r\)求 \[\sum_{i=1}^ni ...

  5. BZOJ2655: calc(dp 拉格朗日插值)

    题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] ...

  6. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  7. 【BZOJ2655】Calc(拉格朗日插值,动态规划)

    [BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...

  8. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  9. 【BZOJ2655】calc(拉格朗日插值)

    bzoj 题意: 给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\).同时要求这\(n\)个数两两不相同. 问一共有多少种方案. 思路: 因为\(A\)很大,同时随着值域的 ...

随机推荐

  1. CSS scroll-behavior属性: 滚动框指定滚动行为

    概念 当用户手动导航或者 CSSOM scrolling API 触发滚动操作时,CSS 属性 scroll-behavior 为一个滚动框指定滚动行为,其他任何的滚动,例如那些由于用户行为而产生的滚 ...

  2. 利用lnmp一键安装的php环境忘记mysql,root用户密码解决方法

    1.cd /lnmp1.5/tools/ 2.sh reset_mysql_root_password.sh 这样,即可完成修改!

  3. ModelAttribute用法之一

    @ModelAttribute也可以做为Model输出到View时使用,比如: 测试例子   package com.my.controller; import java.util.ArrayList ...

  4. Python之异常处理(执行python文件时传入参数)

    使用sys模块 使用sys模块里的argv参数,用来保存参数值 import sys #sys.argv的作用是获取到运行python文件时,传入的参数 #默认如果运行python文件不传参数,arg ...

  5. jmeter操作数据库

    1)     jmeter不能直接连数据库,需要先添加jar包. 然后将jar包的路径添加到下图: 2)     操作数据库之前要知道数据库的信息(ip.端口号.账号.密码),操作哪个数据库就连哪个: ...

  6. 【kindle笔记】之 《犬夜叉》-2017-12-26

    [kindle笔记]读书记录-总 2017-12-26 <犬夜叉> 买kindle的初衷是看计算机工具书看得眼快瞎了,我弟弟推荐给我的Linux系列<鸟叔私房菜> 真的是深思熟 ...

  7. java不同的包下相同的类名的问题与解决办法

    Java中的类以包进行分类组织,当程序中需要用到某个包下的类时,可以以该类的全限定名进行引用.这样,不同的包中的类就可以同名,不会产生混淆. 但是这样就可能导致引用的时候会产生一些问题. 第一个问题, ...

  8. PHP中stdClass的意义

    在WordPress中很多地方使用stdClass来定义一个对象(而通常是用数组的方式),然后使用get_object_vars来把定义的对象『转换』成数组. 如下代码所示:   1 2 3 4 5 ...

  9. Python 第三方库 cp27、cp35 等文件名的含义(转)

    转自 https://blog.csdn.net/lanchunhui/article/details/62417519 转自 https://stackoverflow.com/questions/ ...

  10. LODOP打印安装到win的特殊字体

    LODOP能够打印的字体,来源于安装到本机windows里字体库的字体,如果需要打印特别的字体,需要在该操作系统安装.由于web网站的用户千差万别,字体库也有不同,但是一般常见的字体都是有的,因此做模 ...