果然SA比SAM+map快。

首先这是SAM裸题,然而SA求本质不同子串个数也很容易。考虑倒着建SA,这样没错加一个字符就变成加一个后缀,其他后缀都不变,那么i的答案就是只考虑前i个后缀的答案。搞个双向链表,每次删一个后缀并RMQ更新答案。

(SAM+map复杂度可能是错的,但是我不清楚)

#include<algorithm>
#include<cstdio>
#define lb lower_bound
using namespace std;
const int N=1e5+5;
typedef int arr[N];
arr sa,r,f[17],c,v,s,t,p,q;
typedef long long ll;
ll b,z[N];
void pre(int*s,int n){
for(int i=0;i<n;++i)
++c[s[i]];
for(int i=1;i<n;++i)
c[i]+=c[i-1];
for(int i=n-1;~i;--i)
sa[--c[s[i]]]=i;
int m=0;
for(int i=1;i<n;++i)
r[sa[i]]=s[sa[i]]!=s[sa[i-1]]?++m:m;
for(int j=1;;j<<=1){
if(++m==n)break;
for(int i=0;i<j;++i)
v[i]=n-j+i;
for(int i=0;i<m;++i)
c[i]=0;
for(int i=0,k=j;i<n;++i){
if(sa[i]>=j)
v[k++]=sa[i]-j;
++c[r[i]];
}
for(int i=1;i<m;++i)
c[i]+=c[i-1];
for(int i=n-1;~i;--i)
sa[--c[r[v[i]]]]=v[i],v[i]=r[i];
m=r[sa[0]]=0;
for(int i=1;i<n;++i)
r[sa[i]]=v[sa[i]]!=v[sa[i-1]]||v[sa[i]+j]!=v[sa[i-1]+j]?++m:m;
}
}
int ask(int i,int j){
int k=__lg(j-i+1);
return min(f[k][i],f[k][j-(1<<k)+1]);
}
struct buf{
char z[9<<17],*s;
buf():s(z){
z[fread(z,1,sizeof z,stdin)]=0;
}
operator int(){
int x=0;
while(*s<48)++s;
while(*s>32)
x=x*10+*s++-48;
return x;
}
}it;
int main(){
int n=it;
for(int i=n-1;~i;--i)
s[i]=t[i]=it;
sort(t,t+n);
for(int i=0;i<n;++i)
s[i]=lb(t,t+n,s[i])-t+1;
pre(s,n+1);
for(int i=0,j=0;i<n;++i){
if(j)--j;
while(s[i+j]==s[sa[r[i]-1]+j])++j;
f[0][r[i]]=j;
}
for(int j=1;n>>j;++j)
for(int i=0;i+(1<<j)-1<=n;++i)
f[j][i]=min(f[j-1][i],f[j-1][i+(1<<j-1)]);
for(int i=1;i<=n;++i)
b+=n-sa[i]-f[0][i];
for(int i=n;i>1;--i)
p[i]=i-1;
for(int i=1;i<n;++i)
q[i]=i+1;
for(int i=0;i<n;++i){
int j=r[i],k=0;
if(p[j])k=max(k,ask(p[j]+1,j));
if(q[j])k=max(k,ask(j+1,q[j]));
z[i]=b,b-=n-i-k;
p[q[j]]=p[j];
q[p[j]]=q[j];
}
for(int i=n-1;~i;--i)
printf("%lld\n",z[i]);
}

BZOJ4516: [Sdoi2016]生成魔咒的更多相关文章

  1. BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

    #include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...

  2. [bzoj4516][Sdoi2016]生成魔咒——后缀自动机

    Brief Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生 ...

  3. BZOJ4516 [Sdoi2016]生成魔咒 【后缀自动机】

    题目 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2, ...

  4. BZOJ4516 SDOI2016生成魔咒(后缀数组+平衡树)

    一个字符串本质不同的子串数量显然是总子串数减去所有height值.如果一个个往里加字符的话,每次都会改动所有后缀完全没法做.但发现如果从后往前加的话,每次只会添加一个后缀.于是我们把字符串倒过来,每次 ...

  5. bzoj4516: [Sdoi2016]生成魔咒 sam

    题意:每次插入一个数字,查询本质不同的子串有多少个 题解:sam,数字很大,ch数组用map来存,每次ins之后查询一下新建点表示多少个本质不同的子串(l[np]-l[fa[np]]) /****** ...

  6. 2018.12.23 bzoj4516: [Sdoi2016]生成魔咒(后缀自动机)

    传送门 samsamsam入门题. 题意简述:给出一个串让你依次插入字符,求每次插入字符之后不同子串的数量. 显然每次的变化量只跟新出现的nnn个后缀有关系,那么显然就是maxlenp−maxlenl ...

  7. bzoj千题计划283:bzoj4516: [Sdoi2016]生成魔咒(后缀数组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4516 考虑在后面新加一个字母产生的影响 假设是第i个 如果不考虑重复,那么会增加i个不同的字符串 考 ...

  8. BZOJ4516: [Sdoi2016]生成魔咒(后缀数组 set RMQ)

    题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就 ...

  9. BZOJ4516 SDOI2016生成魔咒(后缀自动机)

    本质不同子串数量等于所有点的len-parent树上父亲的len的和.可以直接维护. #include<iostream> #include<cstdio> #include& ...

随机推荐

  1. When it comes to intrusion analysis and forensics

    以下内容的出现可以追溯到一个发生在互联网的安全事件: Z公司遭受某种攻击,服务器上被植入了Linux DDOS木马,部分系统命令入ls遭替换,攻击者已经获得该服务器root权限: 影响更恶劣的是,连接 ...

  2. 浅析匿名函数、lambda表达式、闭包(closure)区别与作用

    浅析匿名函数.lambda表达式.闭包(closure)区别与作用 所有的主流编程语言都对函数式编程有支持,比如c++11.python和java中有lambda表达式.lua和JavaScript中 ...

  3. Android面试题--事件处理

    1.Handler 机制 Android 中主线程也叫 UI 线程,那么从名字上我们也知道主线程主要是用来创建.更新 UI 的,而其他耗时操作,比如网络访问,或者文件处理,多媒体处理等都需要在子线程中 ...

  4. jqgrid+bootstrap样式实践

    jqgrid+bootstrap样式实践,报错数据加载,选中,删除等功能 需要引入的样式 bootstrap.min.css ui.jqgrid.css 需要引入的JS jquery.min.js b ...

  5. Atitit. 项目文档目录大纲 总集合  v2

    Atitit. 项目文档目录大纲 总集合  v2 -----Atitti.原有项目源码的架构,框架,配置与环境说明 v3 q511 -----Atitit.开发环境 与 工具 以及技术框架 以及 注意 ...

  6. 传统IT企业与互联网企业的一点思考

    [注意前提]应当说,比较常用的管理策略并没有界线分明的优劣之分,只有适不适合企业的经营战略,团队文化,发展状况等. 之所以有传统IT企业与互联网企业的区别,主要的原因是两者所处的市场环境与经营思路造成 ...

  7. ABP督导项目(1)

    创建实体 项目名TQMASP 在领域层创建entities文件夹存放实体类如图 创建Dbcontext public virtual IDbSet<Supervisor> Supervis ...

  8. netty学习资料

    netty学习资料推荐官方文档和<netty权威指南>和<netty in action>这两本书.下面收集下网上分享的资料 netty官方参考文档 Netty 4.x Use ...

  9. ORA-28000: the account is locked 账户被锁

    这种情况可能是因为你输入错误的用户名密码达到10次,oracle给你锁住了. 解决方法: 首先 ~bash$ sqlplus /nolog SQL> conn sys/sys as sysdba ...

  10. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...