利用aiohttp制作异步爬虫
asyncio可以实现单线程并发IO操作,是Python中常用的异步处理模块。关于asyncio模块的介绍,笔者会在后续的文章中加以介绍,本文将会讲述一个基于asyncio实现的HTTP框架——aiohttp,它可以帮助我们异步地实现HTTP请求,从而使得我们的程序效率大大提高。
本文将会介绍aiohttp在爬虫中的一个简单应用。
我们的项目来源于:Scrapy爬虫(5)爬取当当网图书畅销榜,在原来的项目中,我们是利用Python的爬虫框架scrapy来爬取当当网图书畅销榜的图书信息的。在本文中,笔者将会以两种方式来制作爬虫,比较同步爬虫与异步爬虫(利用aiohttp实现)的效率,展示aiohttp在爬虫方面的优势。
首先,我们先来看看用一般的方法实现的爬虫,即同步方法,完整的Python代码如下:
'''
同步方式爬取当当畅销书的图书信息
'''
import time
import requests
import pandas as pd
from bs4 import BeautifulSoup
# table表格用于储存书本信息
table = []
# 处理网页
def download(url):
html = requests.get(url).text
# 利用BeautifulSoup将获取到的文本解析成HTML
soup = BeautifulSoup(html, "lxml")
# 获取网页中的畅销书信息
book_list = soup.find('ul', class_="bang_list clearfix bang_list_mode")('li')
for book in book_list:
info = book.find_all('div')
# 获取每本畅销书的排名,名称,评论数,作者,出版社
rank = info[0].text[0:-1]
name = info[2].text
comments = info[3].text.split('条')[0]
author = info[4].text
date_and_publisher = info[5].text.split()
publisher = date_and_publisher[1] if len(date_and_publisher) >= 2 else ''
# 将每本畅销书的上述信息加入到table中
table.append([rank, name, comments, author, publisher])
# 全部网页
urls = ['http://bang.dangdang.com/books/bestsellers/01.00.00.00.00.00-recent7-0-0-1-%d' % i for i in range(1, 26)]
# 统计该爬虫的消耗时间
print('#' * 50)
t1 = time.time() # 开始时间
for url in urls:
download(url)
# 将table转化为pandas中的DataFrame并保存为CSV格式的文件
df = pd.DataFrame(table, columns=['rank', 'name', 'comments', 'author', 'publisher'])
df.to_csv('E://douban/dangdang.csv', index=False)
t2 = time.time() # 结束时间
print('使用一般方法,总共耗时:%s' % (t2 - t1))
print('#' * 50)
输出结果如下:
##################################################
使用一般方法,总共耗时:23.522345542907715
##################################################
程序运行了23.5秒,爬取了500本书的信息,效率还是可以的。
我们前往目录中查看文件,如下:
接下来我们看看用aiohttp制作的异步爬虫的效率,完整的源代码如下:
'''
异步方式爬取当当畅销书的图书信息
'''
import time
import aiohttp
import asyncio
import pandas as pd
from bs4 import BeautifulSoup
# table表格用于储存书本信息
table = []
# 获取网页(文本信息)
async def fetch(session, url):
async with session.get(url) as response:
return await response.text(encoding='gb18030')
# 解析网页
async def parser(html):
# 利用BeautifulSoup将获取到的文本解析成HTML
soup = BeautifulSoup(html, "lxml")
# 获取网页中的畅销书信息
book_list = soup.find('ul', class_="bang_list clearfix bang_list_mode")('li')
for book in book_list:
info = book.find_all('div')
# 获取每本畅销书的排名,名称,评论数,作者,出版社
rank = info[0].text[0:-1]
name = info[2].text
comments = info[3].text.split('条')[0]
author = info[4].text
date_and_publisher = info[5].text.split()
publisher = date_and_publisher[1] if len(date_and_publisher) >=2 else ''
# 将每本畅销书的上述信息加入到table中
table.append([rank,name,comments,author,publisher])
# 处理网页
async def download(url):
async with aiohttp.ClientSession() as session:
html = await fetch(session, url)
await parser(html)
# 全部网页
urls = ['http://bang.dangdang.com/books/bestsellers/01.00.00.00.00.00-recent7-0-0-1-%d'%i for i in range(1,26)]
# 统计该爬虫的消耗时间
print('#' * 50)
t1 = time.time() # 开始时间
# 利用asyncio模块进行异步IO处理
loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(download(url)) for url in urls]
tasks = asyncio.gather(*tasks)
loop.run_until_complete(tasks)
# 将table转化为pandas中的DataFrame并保存为CSV格式的文件
df = pd.DataFrame(table, columns=['rank','name','comments','author','publisher'])
df.to_csv('E://douban/dangdang.csv',index=False)
t2 = time.time() # 结束时间
print('使用aiohttp,总共耗时:%s' % (t2 - t1))
print('#' * 50)
我们可以看到,这个爬虫与原先的一般方法的爬虫的思路和处理方法基本一致,只是在处理HTTP请求时使用了aiohttp模块以及在解析网页时函数变成了协程(coroutine),再利用aysncio进行并发处理,这样无疑能够提升爬虫的效率。它的运行结果如下:
##################################################
使用aiohttp,总共耗时:2.405137538909912
##################################################
2.4秒,如此神奇!!!再来看看文件的内容:
综上可以看出,利用同步方法和异步方法制作的爬虫的效率相差很大,因此,我们在实际制作爬虫的过程中,也不妨可以考虑异步爬虫,多多利用异步模块,如aysncio, aiohttp。另外,aiohttp只支持3.5.3以后的Python版本。
当然,本文只是作为一个异步爬虫的例子,并没有具体讲述异步背后的故事,而异步的思想在我们现实生活和网站制作等方面有着广泛的应用,笔者将会以自己的理解来介绍异步编程,欢迎大家关注。
本文到此结束,欢迎大家关注微信公众号: 轻松学会Python爬虫(微信号为:easy_web_scrape)。欢迎交流~
利用aiohttp制作异步爬虫的更多相关文章
- python 基于aiohttp的异步爬虫实战
钢铁知识库,一个学习python爬虫.数据分析的知识库.人生苦短,快用python. 之前我们使用requests库爬取某个站点的时候,每发出一个请求,程序必须等待网站返回响应才能接着运行,而在整个爬 ...
- 利用js制作异步验证ajax方法()
如何利用js写ajax异步验证.代码如下: window.onload = function(){ var name = document.getElementById('register-name- ...
- 深入理解协程(四):async/await异步爬虫实战
本文目录: 同步方式爬取博客标题 async/await异步爬取博客标题 本片为深入理解协程系列文章的补充. 你将会在从本文中了解到:async/await如何运用的实际的爬虫中. 案例 从CSDN上 ...
- python异步爬虫
本文主要包括以下内容 线程池实现并发爬虫 回调方法实现异步爬虫 协程技术的介绍 一个基于协程的异步编程模型 协程实现异步爬虫 线程池.回调.协程 我们希望通过并发执行来加快爬虫抓取页面的速度.一般的实 ...
- [python]新手写爬虫v2.5(使用代理的异步爬虫)
开始 开篇:爬代理ip v2.0(未完待续),实现了获取代理ips,并把这些代理持久化(存在本地).同时使用的是tornado的HTTPClient的库爬取内容. 中篇:开篇主要是获取代理ip:中篇打 ...
- (转)新手写爬虫v2.5(使用代理的异步爬虫)
开始 开篇:爬代理ip v2.0(未完待续),实现了获取代理ips,并把这些代理持久化(存在本地).同时使用的是tornado的HTTPClient的库爬取内容. 中篇:开篇主要是获取代理ip:中篇打 ...
- Python实现基于协程的异步爬虫
一.课程介绍 1. 课程来源 本课程核心部分来自<500 lines or less>项目,作者是来自 MongoDB 的工程师 A. Jesse Jiryu Davis 与 Python ...
- 自定义异步爬虫架构 - AsyncSpider
作者:张亚飞 山西医科大学在读研究生 1. 并发编程 Python中实现并发编程的三种方案:多线程.多进程和异步I/O.并发编程的好处在于可以提升程序的执行效率以及改善用户体验:坏处在于并发的程序不容 ...
- 利用TabHost制作QQ客户端标签栏效果(低版本QQ)
学习一定要从基础学起,只有有一个好的基础,我们才会变得更加的perfect 下面小编将利用TabHost制作QQ客户端标签栏效果(这个版本的QQ是在前几年发布的)…. 首先我们看一下效果: 看到这个界 ...
随机推荐
- 0x66 Tarjan算法与无向图连通性(1)
……是什么? 给定无向连通图G=(V,E)(不一定连通); 割点:若对于x∈V,从图中删去节点x以及所有与x关联的边后,G分裂成两个或两个以上不相连的子图,则称x为G的割点. 桥(割边):若对于e∈E ...
- 【ProtoBuffer】windows上安装ProtoBuffer3.1.0 (附已编译资源)
------- 17.9.17更新 --- 以下这些方法都是扯淡,对我的机器不适用,我后来花了最后成功安装并亲测可用的方法不是靠vs编过的,vs生成的库引入后函数全部报undefine refere ...
- Oracle数据库---用户与角色
Oracle数据库---用户与角色 2019年02月26日 10:56:10 俊杰梓 阅读数:21 标签: 数据库 更多 个人分类: 数据库 版权声明:版权所有,转载请注明出处.谢谢 https: ...
- Python爬取淘宝店铺和评论
1 安装开发需要的一些库 (1) 安装mysql 的驱动:在Windows上按win+r输入cmd打开命令行,输入命令pip install pymysql,回车即可. (2) 安装自动化测试的驱动s ...
- #218 Iterate with JavaScript For Loops
一个条件语句只能执行一次代码,而一个循环语句可以多次执行代码. JavaScript 中最常见的循环就是“for循环”. for循环中的三个表达式用分号隔开: for ([初始化]; [条件判断]; ...
- 解读IEEE 7417的软件体系架构描述的概念模型
本文将解读标准IEEE Std 1471-2000(密集型软件的体系结构描述推荐实施规程)的概念模型图部分,从中一窥作为软件架构师的进行架构设计的思考角度与策略.如果我们把世界当做一场游戏,现在要玩的 ...
- why microsoft named their cloud service Azure?
best guess I can personally make is that because Azure literally means “bright blue color of the clo ...
- struts2 简单注解配置代替xml配置文件
1. 主要文件 LoginAction.javapackage com.edu.struts2.action;import org.apache.struts2.convention.annotati ...
- IDEA远程Debug
进行远程debug是我们排查线上bug的一个最常用的工具,本篇博文就简单介绍一下如何使用IDEA来进行远程debug 1. 修改Tomcat配置文件 修改bin目录下的catalina.sh文件,在文 ...
- 吴恩达机器学习笔记48-降维目标:数据压缩与可视化(Motivation of Dimensionality Reduction : Data Compression & Visualization)
目标一:数据压缩 除了聚类,还有第二种类型的无监督学习问题称为降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,而且它也让我们 ...