LCA + 树上差分(边差分)

由题目意思知,所有主要边即为该无向图的一个生成树。

我们考虑点(u,v)若连上一条附加边,那么我们切断(u,v)之间的主要边之后,由于附加边的存在,(u,v)之间的路径形成了一个环,

所以我们还必须将这条附加边也切断。

因此我们可以看成(u,v)之间的路径上的所有边都被覆盖了一次。

我们可以统计出所有边被覆盖的次数,就可以自然的到答案:

  • 若该边被覆盖了0次,那么切断主边之后随意切断一条附加边即可,答案总数 += 附加边的数量
  • 若该边被覆盖了1次,那么切断主边之后必须切断附加边,答案总数++
  • 若改变被覆盖了2次及2次以上,无论如何操作都得不到答案

如何求出每条边的覆盖次数呢?当然是用树上差分,这里是将边差分,val[x]表示从x的父亲节点到x的路径经过的次数。

当由路径被(u,v)被覆盖时,val[u]++, val[v]++, val[lca(u,v)]-=2。

最后dfs一次生成树统计val总和即可

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 100005;
int n, m, val[N], head[N], cnt, p[N][20], depth[N], t;
ll ans;
bool vis[N];
struct Edge{ int v, next; }edge[N<<2]; inline void addEdge(int a, int b){
edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
} inline void dfs(int s, int fa){
depth[s] = depth[fa] + 1;
p[s][0] = fa;
for(int i = 1; i <= t; i ++){
p[s][i] = p[p[s][i - 1]][i - 1];
}
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa) continue;
dfs(u, s);
}
} inline int lca(int x, int y){
if(depth[x] < depth[y]) swap(x, y);
for(int i = t; i >= 0; i --){
if(depth[p[x][i]] >= depth[y]) x = p[x][i];
}
if(x == y) return y;
for(int i = t; i >= 0; i --){
if(p[x][i] != p[y][i]) x = p[x][i], y = p[y][i];
}
return p[y][0];
} inline void dfs(int s){
vis[s] = true;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(vis[u]) continue;
dfs(u);
val[s] += val[u];
}
if(s != 1 && val[s] == 0) ans += m;
else if(s != 1 && val[s] == 1) ans += 1;
} inline void init(){
cnt = 0, ans = 0, t = 0;
full(val, 0), full(p, 0), full(depth, 0), full(head, -1);
full(vis, 0);
} int main(){ while(scanf("%d%d", &n, &m) != EOF){
init();
for(int i = 0; i < n - 1; i++){
int u, v; scanf("%d%d", &u, &v);
addEdge(u, v), addEdge(v, u);
}
t = (int) (log(n) / log(2)) + 1;
dfs(1, 0);
for(int i = 0; i < m; i++){
int u, v; scanf("%d%d", &u, &v);
val[u]++, val[v]++, val[lca(u, v)] -= 2;
}
dfs(1);
printf("%lld\n", ans);
}
return 0;
}

POJ3417 Network(算竞进阶习题)的更多相关文章

  1. POJ 1966 Cable TV Network (算竞进阶习题)

    拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...

  2. 洛谷P4178 Tree (算竞进阶习题)

    点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的 ...

  3. BZOJ 1912 巡逻(算竞进阶习题)

    树的直径 这题如果k=1很简单,就是在树的最长链上加个环,这样就最大化的减少重复的路程 但是k=2的时候需要考虑两个环的重叠部分,如果没有重叠部分,则和k=1的情况是一样的,但是假如有重叠部分,我们可 ...

  4. POJ 2449 Remmarguts' Date (算竞进阶习题)

    A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最 ...

  5. BZOJ 1855 股票交易 (算竞进阶习题)

    单调队列优化dp dp真的是难..不看题解完全不知道状态转移方程QAQ 推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化.. #include <bits/stdc++.h> ...

  6. POJ 1821 Fence (算竞进阶习题)

    单调队列优化dp 我们把状态定位F[i][j]表示前i个工人涂了前j块木板的最大报酬(中间可以有不涂的木板). 第i个工人不涂的话有两种情况: 那么F[i - 1][j], F[i][j - 1]就成 ...

  7. POJ 1015 Jury Compromise (算竞进阶习题)

    01背包 我们对于这类选或者不选的模型应该先思考能否用01背包来解. 毫无疑问物体的价值可以看成最大的d+p值,那么体积呢?题目的另一个限制条件是d-p的和的绝对值最小,这启发我们把每个物体的d-p的 ...

  8. BZOJ 2200 道路与航线 (算竞进阶习题)

    dijkstra + 拓扑排序 这道题有负权边,但是卡了spfa,所以我们应该观察题目性质. 负权边一定是单向的,且不构成环,那么我们考虑先将正权边连上.然后dfs一次找到所有正权边构成的联通块,将他 ...

  9. POJ 3974 Palindrome (算竞进阶习题)

    hash + 二分答案 数据范围肯定不能暴力,所以考虑哈希. 把前缀和后缀都哈希过之后,扫描一边字符串,对每个字符串二分枚举回文串长度,注意要分奇数和偶数 #include <iostream& ...

随机推荐

  1. asp.net调用前台js调用后台代码分享

    asp.net调用前台js调用后台代码分享 C#前台js调用后台代码前台js<script type="text/javascript" language="jav ...

  2. Ubuntu 18.04 根目录为啥只有 4G 大小

    其实准确点儿的描述应该是:Ubuntu Server 18.04 ,设置 LVM,安装完成后根目录的容量为什么只有 4G?只有 Server 版有问题,Desktop 版没有问题,Ubuntu 16. ...

  3. 配置linux-Fedora系统下iptables防火墙

    参考地址:https://blog.csdn.net/zhangjingyi111/article/details/78902820 本篇文章为实验课过程记录,较为简略. 1.查看系统是否安装ipta ...

  4. Tomcat搭建Web 应用服务器

    和安卓联合开发,测试手机设配效果,被安卓开发大神同事一顿鄙视之后,愤然而起自己搭建了一个本地服务器(愤怒 玻璃心使我成长~哈哈) java+tomcat安装 java安装 注册oracle账号: 手机 ...

  5. es6在网页中模块引入的方法

    前言: 以前,当然包括现在的大部分js引入,我们都是利用<script></script>这种全局的方式进行引入,当然这种弊端还是用的,比如这样直接利用script引入的话,会 ...

  6. 使用C# HttpWebRequest进行多线程网页提交。Async httpclient/HttpWebRequest实现批量任务的发布及异步提交和超时取消

    使用线程池并发处理request请求及错误重试,使用委托处理UI界面输出. http://www.cnblogs.com/Charltsing/p/httpwebrequest.html for (i ...

  7. 了解sso原理

  8. docker redis 多个实例

    Docker运维笔记-Docker端口映射 - 恶性佛 - CSDN博客https://blog.csdn.net/qq_29994609/article/details/51730640 利用 Do ...

  9. Oracle增删改查sql语句

    --创建表空间 create tablespace waterboss datafile 'd:\waterboss.dbf' size 100m autoextend on next 10m --创 ...

  10. maven+springmvc项目启动时,request mapping not found……

    springmvc项目跑的好好的,跑着跑着,出现request mapping not found的问题. 第一波,网上查问题,stackoverflow上面的各种配置说明,但是我本地就是没查出问题 ...