HDU4625 JZPTREE 【树形DP】【第二类斯特林数】
题目大意:
对1到n求题目中描述的那个式子。
题目分析:
幂不好处理,转化为斯特林数。
根据$ n^k= \sum_ { i=0 }^k S(k,i)×i!×C(n,i) $。
我们可以将问题转化为对每个u和$ j=1 \sim k $求$ \sum_ { i=1 }^n \binom{dist(u,i)}{j} $。 通过杨辉三角向子树做一遍树形DP,再向父亲做一遍树形DP即可。
代码:
#include<bits/stdc++.h>
using namespace std; const int mod = ; int n,k; int S[][];
int f[][];
int fac[];
vector <int> g[]; void init(){
memset(f,,sizeof(f));
} void read(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) g[i].clear();
for(int i=;i<n;i++){
int u,v; scanf("%d%d",&u,&v);
g[u].push_back(v); g[v].push_back(u);
}
} void dfs1(int now,int fa){
for(int i=;i<g[now].size();i++){
if(g[now][i] == fa) continue;
dfs1(g[now][i],now);
f[now][] += f[g[now][i]][];
f[now][] %= mod;
for(int j=;j<=k;j++){
f[now][j] += f[g[now][i]][j] + f[g[now][i]][j-];
f[now][j] %= mod;
}
}
f[now][] ++;
} void dfs2(int now,int fa){
for(int i=;i<g[now].size();i++){
if(g[now][i] == fa) continue;
for(int j=k;j>=;j--){
int p = f[now][j]-f[g[now][i]][j]-f[g[now][i]][j-];
p = ((p%mod)+mod)%mod;
int q=f[now][j-]-f[g[now][i]][j-]-(j->=?f[g[now][i]][j-]:);
q = ((q%mod)+mod)%mod;
f[g[now][i]][j] += p+q;
f[g[now][i]][j] %= mod;
}
f[g[now][i]][] += f[now][] - f[g[now][i]][];
f[g[now][i]][] %= mod;
dfs2(g[now][i],now);
}
} void work(){
dfs1(,);
dfs2(,);
for(int i=;i<=n;i++){
int ans = ;
for(int j=;j<=k;j++){
int nowans = (((fac[j]*f[i][j])%mod)*S[k][j])%mod;
ans += nowans; ans %= mod;
}
printf("%d\n",ans);
}
} int main(){
int t; scanf("%d",&t);
fac[] = ;
for(int i=;i<=;i++) S[i][] = ,fac[i] = (fac[i-]*i)%mod;
for(int i=;i<=;i++){
for(int j=;j<=i;j++) S[i][j] = (S[i-][j-]+j*S[i-][j])%mod;
}
while(t--){
init();
read();
work();
}
return ;
}
HDU4625 JZPTREE 【树形DP】【第二类斯特林数】的更多相关文章
- BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)
题意 给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求 \[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist ...
- 【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)
传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ ...
- 【hdu4045】Machine scheduling(dp+第二类斯特林数)
传送门 题意: 从\(n\)个人中选\(r\)个出来,但每两个人的标号不能少于\(k\). 再将\(r\)个人分为不超过\(m\)个集合. 问有多少种方案. 思路: 直接\(dp\)预处理出从\(n\ ...
- bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
- P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...
- BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...
- Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)
题目链接: http://codeforces.com/problemset/problem/140/E 题意: 圣诞树上挂彩球,要求从上到下挂\(n\)层彩球.已知有\(m\)种颜色的球,球的数量不 ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
随机推荐
- web安全:通俗易懂,以实例讲述破解网站的原理及如何进行防护!如何让网站变得更安全。
本篇以我自己的网站为例来通俗易懂的讲述网站的常见漏洞,如何防止网站被入侵,如何让网站更安全. 要想足够安全,首先得知道其中的道理. 本文例子通俗易懂,主要讲述了 各种漏洞 的原理及防护,相比网上其它的 ...
- babel-polyfill使用与性能优化
文章首发于笔者的个人博客 文章概览 本文主要内容包括:什么是babel-polyfill,如何使用,如何通过按需加载进行性能优化. 本文所有例子可以在 笔者的github 找到. 什么是babel-p ...
- prometheus排错
1.导入grafana模板后node-export某些图像无法获取到data: 解决:导入grafana 模板是需要看node-export 版本是否与模板要求的一致,不同版本的node-export ...
- Jenkins - Extended E-mail配置教程
前言: 在Jenkins的使用中邮件提醒是一个常用功能,Extended E-mail Notification是一个功能更为齐全,使用也更为复杂的插件,本文即将为大家详细讲解如何配置相关内容,感兴趣 ...
- maven新建项目
选择新建maven project 这个文件通常作为父工程,用于管理jar包的依赖,锁定jar包版本 选择next group id :如表面意思 组织名 公司名 artifact id :工 ...
- mysql常用命令小结
1.命令行中键入 net start/stop mysql 开启/停止mysql服务2.命令行中键入 mysql -u用户名 -p密码 连接数据库 (以下命令后须加分号';')3.用show语句显示当 ...
- semantic-ui 表单
1.定义表单 先看一个基础的表单,再讲解一下: <form class="ui form" method="post" action="&quo ...
- Jenkins redeploy artifacts
jenkins redeploy artifacts 按钮 - 开源中国https://www.oschina.net/question/3045293_2247829 Jenkins 构建失败后通过 ...
- 【Python3练习题 020】 求1+2!+3!+...+20!的和
方法一 import functools sum = 0 for i in range(1,21): sum = sum + functools.reduce(lambda x,y: x* ...
- java.lang包【Object类】
基本描述: (1)Object类位于java.lang包中,java.lang包包含着Java最基础和核心的类,在编译时会自动导入: (2)Object类是所有Java类的祖先.每个类都使用 Obje ...