【BZOJ1042】硬币购物(动态规划,容斥原理)

题面

BZOJ

Description

  硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s

i的价值的东西。请问每次有多少种付款方法。

Input

  第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000

Output

  每次的方法数

Sample Input

1 2 5 10 2

3 2 3 1 10

1000 2 2 2 900

Sample Output

4

27

题解

真题真好啊。

先不考虑任何有关于硬币个数的限制

设\(f[i]\)表示没有任何限制的情况下,价格为\(n\)的方案数

直接做一个背包就行了。

现在加上限制来看,我们用总方案减去不合法。

总方案是\(f[n]\),不合法呢?

某一个硬币如果不合法,那么它就要用\(d+1\)个

剩下的随便选,也就是\(f[n-c*(d+1)]\)

这样直接容斥计算即可。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int c[4],d[4],S;
ll f[111111];
int main()
{
for(int i=0;i<4;++i)c[i]=read();
f[0]=1;
for(int k=0;k<4;++k)
for(int j=c[k];j<=100000;++j)
f[j]+=f[j-c[k]];
int Q=read();
while(Q--)
{
for(int i=0;i<4;++i)d[i]=read();S=read();
ll ss,ans=0;
for(int i=0,tt;i<16;++i)
{
ss=tt=0;
for(int j=0;j<4;++j)
if(i&(1<<j))++tt,ss+=(d[j]+1)*c[j];
if(ss>S)continue;
(tt&1)?ans-=f[S-ss]:ans+=f[S-ss];
}
printf("%lld\n",ans);
}
return 0;
}

【BZOJ1042】硬币购物(动态规划,容斥原理)的更多相关文章

  1. BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包

    BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042:[HAOI2008]硬币购物(容斥原理+DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1042 [题目大意] 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4. 某人去 ...

  4. bzoj1042硬币购物

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 dp预处理+容斥原理. 先预处理求出无限制的各面值的组成方案数 f (完全背包). 求s ...

  5. BZOJ 1042: [HAOI2008]硬币购物(容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题意: 思路: 如果不考虑硬币个数的话,这就是一道完全背包的题目. 直接求的话行不通,于是这里 ...

  6. bzoj1042硬币购物——递推+容斥

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 递推,再用容斥原理减掉多余的,加上多减的……(dfs)即可. 代码如下: #includ ...

  7. Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理

    考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...

  8. bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】

    当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #incl ...

  9. [bzoj1042]硬币购物

    先预处理出没有上限的方案数,然后容斥,然后将所有东西的范围都变为[0,+oo),即可用预处理出的dp数组计算 1 #include<bits/stdc++.h> 2 using names ...

随机推荐

  1. Java实现在线预览功能

    java实现在线预览功能,需要用到  jacob.dll jacob.jar   预览pdf所需js  pdfobject.min.js 将上传文件转为pdf保存. <div class=&qu ...

  2. Python基础灬异常

    异常&异常处理 异常!=错误 在程序运行过程中,总会遇到各种各样的错误. 有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复的 ...

  3. Thymeleaf教程【转】

    作者:不做浮躁的人 转自:http://www.blogjava.net/bjwulin/archive/2013/02/07/395234.html PS:其他推荐教程地址 http://blog. ...

  4. [T-ARA][HUE]

    歌词来源:http://music.163.com/#/song?id=22704406 wa du seu mo geum to yo do ga tae 어딜가도 스페셜한게 없어 [eo-dil ...

  5. RESTful源码笔记之RESTful Framework的基本组件

    快速实例 Quickstart 序列化 创建一个序列化类 简单使用 开发我们的Web API的第一件事是为我们的Web API提供一种将代码片段实例序列化和反序列化为诸如json之类的表示形式的方式. ...

  6. 第六次作业psp

    psp 进度条 代码累积折线图 博文累积折线图 psp饼状图

  7. 20162320MyOD重做版

    博客说明 由于上次的MyOD.java没有得分,所以这次我重做了这个java,代码是自己完成的,请教了一些同学的思路.故补交一篇博客来说明我对每一步代码的编写的想法以及理解. 代码片段及理解 1.先创 ...

  8. 【转】node.js框架比较

    我偶然间看到这篇文章,转这个文章并没有什么含义,仅仅是感觉总结的不错,对于新学node的友友们来说希望这篇文章为大家对 Node.js 后端框架选型带来一些帮助,学习不再迷茫,也是让我有个保存,以后参 ...

  9. [并查集] How Many Tables

    题目描述 Today is Ignatius' birthday. He invites a lot of friends. Now it's dinner time. Ignatius wants ...

  10. TCP系列41—拥塞控制—4、Linux中的慢启动和拥塞避免(一)

    一.Linux中的慢启动和拥塞避免 Linux中采用了Google论文的建议把IW初始化成了10了.在linux中一般有三种场景会触发慢启动过程 1.连接初始建立发送数据的时候,此时cwnd初始化为1 ...