【bzoj3811】【清华集训2014】玛里苟斯
3811: 玛里苟斯
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 500 Solved: 196
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
0
1
2
3
Sample Output
HINT
Source
题解:
wwwwodddd ORZ
求子集异或和k次方的期望;
首先这和期望的k次方不一样,所以还是老老实实按k分类讨论,按位算贡献吧:
k=1 , 考虑第i位是否有1,有会贡献的$2^{i-1} $, 全部或起来除二;
k=2,如果某个异或和的第i位和第j为都有值,会贡献$2^{i+j}$的答案 , 首先这两位都必须要有至少一个1;
紧接着如果对于每一个数来说,这两位的值都相同 ,说明两位不相互独立,所以概率是1/2,期望是$2^{i+j-1}$;
否则说明两位独立,在异或运算下(0,0)(0,1)(1,0)(1,1)的概率相同为1/4,期望是$2^{i+j-2}$;
k>=3 , 由于答案在2^63次方以内,所以线性基的大小不会超过22,直接暴力枚举计算期望;
这题有一个结论是答案*2一定是整数;
也就是答案的小数最多有一位;
这里有个评论证明了,但是我没太看懂: https://blog.sengxian.com/solutions/bzoj-3811 自己给出一个可能不太严谨的证明吧(没学过数学。。。): 可以仔细分析一下k==2时的算法;
再扩展到k次方,发现在异或运算下:
二进制位之间贡献不相互独立是具有传递性的;
假设一次计算答案时选定的k个二进制位(可能相同分)集合为:
B = {b1,b2,...bk}
我们可以把他们进一步分成m个集合:
S1...Sm
相同集合元素贡献不互相独立,不同集合贡献互相独立;
这时对答案期望的贡献应该是2^{b1+b2+...+bk - m} ;
而k >= m , 且B里面至少有m个不同的二进制位(即bi!=bj这种);
所以考虑b1+b2+...+bk - m最小的情况:
分析可以发现最小为-;
所以答案小数点后只有一位; 。。。。。。
如果你感兴趣的话
这样就可以用一个数存下对2^|B|的除数和余数,分类讨论小数位的情况(建议看下代码);
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<stack>
#include<map>
#include<set>
#define Run(i,l,r) for(int i=l;i<=r;i++)
#define Don(i,l,r) for(int i=l;i>=r;i--)
#define ll unsigned long long
#define ld long double
#define inf 0x3f3f3f3f
using namespace std;
const int N=;
int n,m,cnt;
ll a[N],d[],res,ans;
char gc(){
static char*p1,*p2,s[];
if(p1==p2)p2=(p1=s)+fread(s,,,stdin);
return(p1==p2)?EOF:*p1++;
}
ll rd(){
ll x=; char c=gc();
while(c<''||c>'')c=gc();
while(c>=''&&c<='')x=(x<<)+(x<<)+c-'',c=gc();
return x;
}
void solve1(){
Run(i,,n){
ll x=rd();
ans|=x;
}
printf("%llu",ans>>);
if(ans&)printf(".5\n");
else puts("");
}
void solve2(){
Run(i,,n)a[i]=rd();
for(int i=;i<=;i++)
for(int j=;j<=;j++){
int fg1=,fg2=,fg3=;
for(int k=;k<=n;k++){
if(a[k]>>i&)fg1=;
if(a[k]>>j&)fg2=;
if((a[k]>>i&)!=(a[k]>>j&))fg3=;
if(fg1&&fg2&&fg3)break;
}
if(!fg1||!fg2)continue;
if(i+j-fg3-<)res++;
else ans+=1ull<<(i+j-fg3-);
}
ans+=res>>; res&=;
printf("%llu",ans);
if(res)printf(".5\n");
else puts("");
}
void solve3(){
for(int i=;i<=n;i++){
ll x=rd();
for(int j=;~j;j--)if(x>>j&){
if(!d[j]){d[j]=x;break;}
else x^=d[j];
}
}
for(int i=;i<=;i++)if(d[i])a[cnt++]=d[i];
for(int i=;i<<<cnt;i++){
ll x=;
for(int j=;j<cnt;j++)if(i>>j&)x^=a[j];
ll t1=,t2=;
for(int j=;j<=m;j++){
t1*=x , t2*=x;
t1 += t2 >> cnt , t2 &= (<<cnt) - ;
}
ans += t1 , res += t2;
ans += res >> cnt , res &= (<<cnt) - ;
}
printf("%llu",ans);
if(res)printf(".5\n");
else printf("\n");
}
int main(){
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
n=rd(); m=rd();
if(m==)solve1();
else if(m==)solve2();
else solve3();
return ;
}//by tkys_Austin;
【bzoj3811】【清华集训2014】玛里苟斯的更多相关文章
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...
- 清华集训2014 sum
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...
- 清华集训2014 day1 task1 玛里苟斯
题目 这可算是描述很简单的一道题了!但是不简单. \(S\)是一个可重集合,\(S = \{a_1, a_2, \dots, a_n \}\). 等概率随机取\(S\)的一个子集\(A = \{a_{ ...
- [UOJ]#36. 【清华集训2014】玛里苟斯
题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63) 做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一 ...
- UOJ#36. 【清华集训2014】玛里苟斯 线性基
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ36.html 题解 按照 $k$ 分类讨论: k=1 : 我们考虑每一位的贡献.若有至少一个数第 $i$ ...
- UOJ #36「清华集训2014」玛里苟斯
这怎么想得到啊......... UOJ #36 题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$ $ Solution:$ ...
- uoj#36. 【清华集训2014】玛里苟斯(线性基+概率期望)
传送门 为啥在我看来完全不知道为什么的在大佬们看来全都是显然-- 考虑\(k=1\)的情况,如果序列中有某一个\(a_j\)的第\(i\)位为\(1\),那么\(x\)的第\(i\)位为\(1\)的概 ...
随机推荐
- Python爬虫初探 - selenium+beautifulsoup4+chromedriver爬取需要登录的网页信息
目标 之前的自动答复机器人需要从一个内部网页上获取的消息用于回复一些问题,但是没有对应的查询api,于是想到了用脚本模拟浏览器访问网站爬取内容返回给用户.详细介绍了第一次探索python爬虫的坑. 准 ...
- Vue学习计划基础笔记(四) - 事件处理
事件处理 目标: 熟练掌握事件监听的方式,熟悉事件处理方式以及各类事件修饰符 理解在html中监听事件的意义 监听事件(v-on) 类似普通的on,例如v-on:click或@click就相当于普通的 ...
- linux ——使用find如何快速替换所有相同参数
在生成环境上有时候需要大规模修改某一配置里的参数,但是该参数存在多个地方,比如IP地址 端口 项目名等,特别是项目名称混乱想统一 find /项目地址 -type f |xargs grep &qu ...
- Debian 给非 ROOT 用户添加 sudoer 权限
问题描述 从官方镜像安装的 Debian 9 (Stretch)比较纯净,但因此需要自己安装.配置许多常用的 Linux 应用,这里就需要 sudo (super user do)临时获取 root ...
- cs231n学习笔记(一)计算机视觉及其发展史
在网易云课堂上学习计算机视觉经典课程cs231n,觉得有必要做个笔记,因为自己的记性比较差,留待以后查看. 每一堂课都对应一个学习笔记,下面就开始第一堂课. 这堂课主要是回顾了计算机视觉的起源及其后来 ...
- xpath获取同级元素
XPath轴(XPath Axes)可定义某个相对于当前节点的节点集: 1.child 选取当前节点的所有子元素 2.parent 选取当前节点的父节点 3.descendant 选取当前节点的所有后 ...
- 王者荣耀交流协会-Alpha发布用户使用报告
用户数量:10人 姓名如下(包括化名):张小斌.王瑞瑞.蛋蛋.小美.晨曦.小丽.张利刚.小闫.小谢.小崔 寻找的用户多为王者荣耀交流协会成员的同学,对管理时间有着强烈的需求,也对PSP Daily软件 ...
- 关于解决MySort
关于解决MySort 那天老师教给我们关于sort的用法以及String类中的split方法.在一定程度上告诉我们sort用法的原理和一些特别的用法后,老师叫我们用JAVA尝试去设计一个"M ...
- P4语法(4)Control block
Control block Control block之中用于放置设计好的Table和Action. 可以把control block认为是pipeline的一个模板,之前用的v1model中就是in ...
- IT小小鸟读后感言
有感 读了我是一只IT小小鸟之后, 我发现上大学得靠自己自学,确定自己的目标和方向,多去参与实验和自己多锻炼编写程序.我现在大一,还有很多时间来让自己变得更好,虽然要补考两门课程,但是还是不要失去信心 ...