BZOJ 1008 越狱 组合数学
题目链接:
https://www.lydsy.com/JudgeOnline/problem.php?id=1008
题目大意:
监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果
相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱
思路:
用总情况 - 不越狱的情况即可
ans = m ^ n - m * (m - 1)^(n - 1)
特判:m=1 n=1时 ans = 0
BZOJ 1008 越狱 组合数学的更多相关文章
- BZOJ 1008 越狱 (组合数学)
题解:正难则反,从总数中减去全部相邻不相同的数目就是答案,n*(n-1)^(m-1):第一个房间有n中染色方案,剩下m-1个房间均只有n-1种染色方案,用总数减就是答案. #include <c ...
- BZOJ 1008 越狱
Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 In ...
- BZOJ 1008 越狱题解
其实这题很水,显然n个房间有m种宗教,总共有n^m种情况, 我们再考虑不合法的情况,显然第一个房间有m种情况,而后一种只有m-1种情况(因为不能相同) 所以不合法的情况有(m-1)^(n-1)*m种情 ...
- BZOJ 1008: [HNOI2008]越狱 组合数学
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1008 题解: 就很傻逼的组合数学啊... $$ans=M^N-M*(M-1)^{(N-1) ...
- BZOJ 1008: [HNOI2008]越狱 快速幂
1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...
- BZOJ 1008 [HNOI2008]越狱
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5166 Solved: 2242[Submit][Status] ...
- BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 10503 Solved: 4558[Submit][Status ...
- BZOJ 1008 [HNOI2008]越狱 排列组合
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4788 Solved: 2060[Submit][Status] ...
- AC日记——[HNOI2008]越狱 bzoj 1008
1008 思路: 越狱情况=总情况-不越狱情况: 代码: #include <cstdio> #include <cstring> #include <iostream& ...
随机推荐
- 0/1背包问题(DP)
Description 给定 n 个物品和一个背包.物品 i 的重量是 wi ,其价值为 vi ,背包的容量为 C .问:应该如何选择装入背包的物品,使得装入背包中物品的总价值最大? Input 输入 ...
- Docker学习之基本概念
Docker学习之基本概念 作为一个后端noder,不了解docker有点说不过去,这节开始,学习一些docker层面的东西. 什么是docker Docker最初是dotCloud公司创始人Solo ...
- Java Calendar Date使用总结
Java Calendar Date使用总结 package cn.outofmemory.codes.Date; import java.util.Calendar; import java.uti ...
- 项目中遇到的问题——jsp:include
昨晚记错了,项目中用的是这个<jsp:attribute>,不过没关系,都差不多!原理是传参数 具体用法: 假设有两个tag文件 aaa 和 bbb aaa有两个属性:name age ...
- BZOJ1812: [Ioi2005]riv(树形dp)
题意 题目链接 Sol 首先一个很显然的思路是直接用\(f[i][j] / g[i][j]\)表示\(i\)的子树中选了\(j\)个节点,该节点是否选的最小权值.但是直接这样然后按照树形背包的套路转移 ...
- PHP学习笔记(二) ---- PHP数据类型
PHP __数据结构类型 一.php 中的八种数据类型 1.四种标量类型 Boolean (布尔类型): true or false,多用于条件判断. 实例: <?php $x = &qu ...
- MSSQL中的表变量
最近在看<Microsoft SQL Server2005技术内幕:T-SQL程序设计> 1.表变量的事务上下文中提到,表变量不受外部事务回滚影响. 举个例子: DECLARE @TA ...
- Canvas学习:globalCompositeOperation详解
在默认情况之下,如果在Canvas之中将某个物体(源)绘制在另一个物体(目标)之上,那么浏览器就会简单地把源特体的图像叠放在目标物体图像上面. 简单点讲,在Canvas中,把图像源和目标图像,通过Ca ...
- html开发那些不好的习惯,和问题。
最近网上看了好多html开发中那些问题和不好的习惯,顺手总结一下. 一.上下间距 在开发中你会发现你明明设置的两个p标签上下间距为20px但你实际测量中会发现他会多4~8px,这是为什么呢!如果你是老 ...
- centos使用ngnix代理https
自己建web服务器,考虑到安全问题需要用到https. 在此使用nginx的反向代理功能实现https 腾讯云证书安装指引 ssl.conf 配置 // http请求重定向https server { ...