t检验&z检验学习[转载]
转自:https://blog.csdn.net/m0_37777649/article/details/74937242
1.什么是T检验?
T检验是假设检验的一种,又叫student t检验(Student’s t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
T检验用于检验两个总体的均值差异是否显著。
2.单总体t检验例子
“超级引擎”工厂是一家专门生产汽车引擎的工厂,根据政府发布的新排放要求,引擎排放平均值应低于20ppm,如何证明生产的引擎是否达标呢?(排放量的均值小于20ppm)
2.1思路1
一个直接的想法就是,把这个工厂所有的引擎都测试一下,然后求一下排放平均值就好了。比如工厂生产了10个引擎,排放水平如下:
15.6 16.2 22.5 20.5 16.4
19.4 16.6 17.9 12.7 13.9
排放平均值为
(15.6+16.2+22.5+20.5+16.4+19.4+16.6+17.9+12.7+13.9)/10=17.17(15.6+16.2+22.5+20.5+16.4+19.4+16.6+17.9+12.7+13.9)/10=17.17
小于政府规定的20ppm,合格!
这也太简单了!
然而,随着“超级引擎”工厂规模逐渐增大,每天可以生产出10万个引擎,如果把每个引擎都测试一遍,估计要累死人了……
有没有更好的方法?
2.2思路2
由于引擎数量太多,把所有引擎测试一遍太麻烦了,一个好想法:
可不可以采用“反证法”?先假设所有引擎排放量的均值为μμ,然后随机抽取10个引擎,看看这10个引擎的排放量均值与假设是否相符,如果相符,则认为假设是正确的,反之认为假设是错误的。这样,就可以通过一小部分数据推测数据的总体.
具体怎么操作呢?
先建立两个假设,分别为:
H0:μ⩾20 (原假设)
H1:μ<20 (备择假设)
【μ代表总体(所有引擎的排放量)均值】
在原假设成立的基础上,求出”取得样本均值或者更极端的均值”的概率,如果概率很大,就倾向于认为原假设H0是正确的,如果概率很小,就倾向于认为原假设H0是错误的,从而接受备择假设H1。
那么如何求这个概率p呢?
这就需要引入一个概念——统计量
简单的讲,统计量就类似于用样本已知的信息(如样本均值,样本标准差)构建的一个“标准得分”,这个“标准得分”可以让我们求出概率p
由于样本服从正态分布,且样本数量较小(10),所以这里要用到的统计量为t统计量,公式如下: 

现在抽取出10台引擎供测试使用,每一台的排放水平如下:
15.6 16.2 22.5 20.5 16.4
19.4 16.6 17.9 12.7 13.9

样本方差:

样本标准差:

我们把原假设μ⩾20 拆分,先考虑μ=20μ=20的情况
将数值带入t统计量公式中,可以得出

由于t统计量服从自由度为9的t分布,我们可以求出t统计量小于-3.00的概率,即下图阴影部分面积

2.3P值——检验结果讨论
通过查询t分位数表(见附录),我们可知,当自由度为9时,t统计量小于-2.821的概率为1%,而我们求得的t统计量为-3.00,所以t统计量小于-3.00的概率比1%还要小(因为-3.00在-2.81的左边,所以阴影面积更小)。
这个概率值通常被称作“p值”,即在原假设成立的前提下,取得“像样本这样,或比样本更加极端的数据”的概率。
3.第一类错误与第二类错误
在例1中,我们认为1%的概率很小,所以更倾向于认为原假设是错误的,从而接受了备择假设。但这样的判断是准确的吗?为了探讨这个问题,我们考虑以下四种情况:


4.α值——T检验标准流程
α值通常取0.05 0.01 0.1等,用来确定t值的拒绝域,拒绝域的意思是拒绝原假设H0.
所以利用t检验做出的结论并不是百分之百正确的,仍有很小的几率会犯错误。对于上面的例子,有些人会认为1%的概率已经很小了,可以拒绝原假设,还有些人会认为1%的概率虽然很小,但不足以拒绝原假设。为了解决这个问题,统计学家们提出了一个阈值,如果犯第一类错误(拒真)的概率小于这个阈值,就认为可以拒绝原假设,否则认为不足以拒绝原假设。这个阈值就叫α。
5.假设形式与拒绝域




类别2称为单尾检验
备择假设中包含>的情形,拒绝域在数轴右侧

备择假设中包含<的情形,拒绝域在数轴左侧

6.总结——T检验的种类
6.1单总体t检验

6.2双总体T检验

6.3配对样本t检验

7.z检验
转自:https://wenku.baidu.com/view/50d00d7d4b7302768e9951e79b89680203d86bc6.html

其中σ0是方差,s是标准差
例子:


那么这个P值是怎么找的呢?
转自:https://wenku.baidu.com/view/df02171ca76e58fafab003f9.html




查正态分布Z值表即可。
t检验&z检验学习[转载]的更多相关文章
- 假设检验的python实现命令——Z检验、t检验、F检验
Z检验 statsmodels.stats.weightstats.ztest() import statsmodels.stats.weightstats as sw 参数详解: x1:待检验数据集 ...
- Java多线程学习(转载)
Java多线程学习(转载) 时间:2015-03-14 13:53:14 阅读:137413 评论:4 收藏:3 [点我收藏+] 转载 :http://blog ...
- s检验|k-S检验|适应性检验|独立性检验|Cintinuity correction |Fisher‘s Exact Test|Likelihood Ratio|Person Chi-Square|φ系数|Cramer’s V|列联系数
应用统计学: s检验是检验否符合正态,而k-S检验是检验否符合一种分布. 已知分布便知道参数,知道参数不知道分布. 适应性检验 多项式分布的情况如下例: 二项分布是多项式分布一种情况,所以就是上式中只 ...
- KS检验学习[转载]
转自:https://wenku.baidu.com/view/ccfa573a3968011ca30091d6.html https://www.cnblogs.com/arkenstone/p/5 ...
- R----ggplot2包介绍学习--转载
https://www.cnblogs.com/nxld/p/6059603.html 分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplo ...
- 多元线性回归检验t检验(P值),F检验,R方等参数的含义
做线性回归的时候,检验回归方程和各变量对因变量的解释参数很容易搞混乱,下面对这些参数进行一下说明: 1.t检验:t检验是对单个变量系数的显著性检验 一般看p值: 如果p值小于0.05表示该自 ...
- 【20170920校内模拟赛】小Z爱学习
所有题目开启-O2优化,开大栈空间,评测机效率为4亿左右. T1 小 Z 学数学(math) Description 要说小 Z 最不擅长的学科,那一定就是数学了.这不,他最近正在学习加法运算.老 ...
- 卡方分布 | t检验 | F检验 | 卡方检验 | 假设检验 | 各种检验持续总结
Chi-square distribution introduction 这个视频真的好,完美地解释了卡方统计量是怎么来的! 我们有一个标准正态分布的总体,我们从其中抽一次,取该值的平方就是Q1统计量 ...
- 置换检验(Permutation Test)学习[转载]
转自:https://www.cnblogs.com/bnuvincent/p/6813785.html http://www.bioinfo-scrounger.com/archives/564 1 ...
随机推荐
- OpenCV学习:Windows+VS2010+OpenCV配置
OpenCV下载: 百度云下载:https://pan.baidu.com/s/1mhAExdu (2.4.9版本) 下载完成后,双击运行exe,选择输出目录,我选择的是C:\OpenCV 配置环境变 ...
- 理解ros话题--6
理解ROS话题(原创博文,转载请标明出处--周学伟http://www.cnblogs.com/zxouxuewei/) Description: 本教程介绍ROS话题(topics)以及如何使用ro ...
- 工作流JBPM_day01:6-执行流程实例
工作流JBPM_day01:6-执行流程实例 执行流程 启动流程实例 查询任务列表 办理任务 向后执行一步 先部署流程定义在启动流程实例 Jbpm4_execution表表示正在执行的流程实例的的信息 ...
- 【渗透测试学习平台】 web for pentester -7.文件包含
Example 1 输入单引号,报错,得到物理路径 可通过../../../../etc/paaswd 读取敏感信息 可包含本地文件或远程文件 https://assets.pentesterlab. ...
- C++的virtual详解
类的多态特性是支持面向对象的语言最主要的特性,有过非面向对象语言开发经历的人,通常对这一章节的内容会觉得不习惯,因为很多人错误的认为,支持类的封装的语言就是支持面向对象的,其实不然,Visual BA ...
- Lua脚本和C++交互(二)
上一节讲了一些基本的Lua应用,下面,我要强调一下,Lua的栈的一些概念,因为这个确实很重要,你会经常用到.熟练使用Lua,最重要的就是要时刻知道什么时候栈里面的数据是什么顺序,都是什么.如果你能熟练 ...
- 通过WireShark抓取iOS联网数据实例分析
本文转载至http://blog.csdn.net/lixing333/article/details/7782539 iosiphone网络filter工具 我在另外一篇博客里,介绍了一款比Wire ...
- cocos2dx游戏--欢欢英雄传说--添加血条
用一个空血槽图片的Sprite做背景,上面放一个ProgressTimer, 通过设置ProgressTimer的进度来控制血条的长短.建立一个Progress类来实现.Progress.h: #if ...
- android基础组件---->Picker的使用
Android为提供了一个随时可用的对话框,方便用户选取时间或者日期.今天我们就简单的学习一下Picker的使用.我们的爱,比死亡还要理所当然. Picker的使用 项目结构如下:
- MQTT协议笔记之mqtt.io项目TCP协议支持
前言 MQTT定义了物联网传输协议,其标准倾向于原始TCP实现.构建于TCP的上层协议堆栈,诸如HTTP等,在空间上多了一些处理路径,稍微耗费了CPU和内存,虽看似微乎其微,但对很多处理能力不足的嵌入 ...