1. libSVM简介

训练模型的结构体

struct svm_problem //储存参加计算的所有样本

{

int l; //记录样本总数

double *y; //指向样本类别的组数

struct svm_node **x;//数据样本

};

当样本类别事先已经被告知时,可以通过数字来给样本数据进行标识(如果是两类通常以1与-1来表示)。如果不清楚样本类别可以用样本个数编号来设置,这时候分类的准确率也就无法判定了。

数据样本是一个二维数组,其中每个单元格储存的是一个svm_node,y与样本数据的对应关系为:

数据节点的结构体

struct svm_node //储存单一向量的单个特征

{

int index; //索引

double value; //值

};

如果需要储存向量x=(1,121,12321,121,1),就可以使用6个svm_node来保存,内存映像为:

index

1

2

3

4

5

-1

value

1

121

12321

121

1

NULL

注意:向量是以索引值为-1的元素为结束标志位的。如果没有标志位将导致程序崩溃。

SVM模型类型枚举

enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };

C_SVC:C表示惩罚因子,C越大表示对错误分类的惩罚越大

NU_SVC:和C_SVC相同。

ONE_CLASS:不需要类标号,用于支持向量的密度估计和聚类.

EPSILON_SVR:-不敏感损失函数,对样本点来说,存在着一个不为目标函数提供任何损失值的区域,即-带。

NU_SVR:由于EPSILON_SVR需要事先确定参数,然而在某些情况下选择合适的参数却不是一件容易的事情。而NU_SVR能够自动计算参数。

到正无穷,NU_SVC是[0,1]。

核函数类型枚举

enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED };

LINEAR:线性核函数(linear kernel)

POLY:多项式核函数(ploynomial kernel)

RBF:径向机核函数(radical basis function)

SIGMOID: 神经元的非线性作用函数核函数(Sigmoid tanh)

PRECOMPUTED:用户自定义核函数

只有四个常用核函数,但我们必须决定哪一个是首选。然后是惩罚因子C和核参数的选择。

在支持向量机中使用的核函数主要有四类:

线性核函数:
多项式核函数:
RBF核函数:
Sigmoid核函数:
其中, 和 均为核参数。

究竟用哪一种核函数取决对数据处理的要求,不过建议一般都是使用RBF核函数。因为RBF核函数具有良好的性态,在实际问题中表现出了良好的性能。

1 RBF核
       
通常而言,RBF核是合理的首选。这个核函数将样本非线性地映射到一个更高维的空间,与线性核不同,它能够处理分类标注和属性的非线性关系。并且,线性核
是RBF的一个特例(Keerthi and Lin
2003),因此,使用一个惩罚因子C的线性核与某些参数(C,γ)的RBF核具有相同的性能。同时,Sigmoid核的表现很像一定参数的RBF核
(Lin and Link 2003)。
        第二个原因,超参数(hyperparameter)的数量会影响到模型选择的复杂度(因为参数只能靠试验呀!)。多项式核比RBF核有更多的超参数。
最后,RBF核有更少的数值复杂度(numerical
difficulties)。一个关键点0<Kij<=1对比多项式核,后者关键值需要
infinity(rxiTxj+r>1)或者zero(rxiTxj+r<1),这是高阶运算。此外,我们必须指出sigmoid核在某些
参数下不是合法的 (例如,不是两个向量的内积)。(Vapnik 1995)
当然,也存在一些情形RBF核是不适用的。特别地,当特征维数非常大的时候,很可能只能适用线性核。

  • svm_type –

    指定SVM的类型,下面是可能的取值:

    • CvSVM::C_SVC C类支持向量分类机。
      n类分组  (n  2),允许用异常值惩罚因子C进行不完全分类。
    • CvSVM::NU_SVC 类支持向量分类机。n类似然不完全分类的分类器。参数为  取代C(其值在区间【0,1】中,nu越大,决策边界越平滑)。
    • CvSVM::ONE_CLASS 单分类器,所有的训练数据提取自同一个类里,然后SVM建立了一个分界线以分割该类在特征空间中所占区域和其它类在特征空间中所占区域。
    • CvSVM::EPS_SVR 类支持向量回归机。训练集中的特征向量和拟合出来的超平面的距离需要小于p。异常值惩罚因子C被采用。
    • CvSVM::NU_SVR 类支持向量回归机。  代替了 p
  • kernel_type –

    SVM的内核类型,下面是可能的取值:

    • CvSVM::LINEAR 线性内核。没有任何向映射至高维空间,线性区分(或回归)在原始特征空间中被完成,这是最快的选择。.
    • CvSVM::POLY 多项式内核: .
    • CvSVM::RBF 基于径向的函数,对于大多数情况都是一个较好的选择: .
    • CvSVM::SIGMOID Sigmoid函数内核:.
  • degree – 内核函数(POLY)的参数degree。
  • gamma – 内核函数(POLY/ RBF/ SIGMOID)的参数
  • coef0 – 内核函数(POLY/ SIGMOID)的参数coef0
  • Cvalue – SVM类型(C_SVC/ EPS_SVR/ NU_SVR)的参数C
  • nu – SVM类型(NU_SVC/ ONE_CLASS/ NU_SVR)的参数 
  • p – SVM类型(EPS_SVR)的参数 
  • class_weights – C_SVC中的可选权重,赋给指定的类,乘以C以后变成 。所以这些权重影响不同类别的错误分类惩罚项。权重越大,某一类别的误分类数据的惩罚项就越大。
  • term_crit – SVM的迭代训练过程的中止条件,解决部分受约束二次最优问题。您可以指定的公差和/或最大迭代次数。

http://blog.csdn.net/liulina603/article/details/8552424

libSVM简介及核函数模型选择的更多相关文章

  1. libsvm的安装,数据格式,常见错误,grid.py参数选择,c-SVC过程,libsvm参数解释,svm训练数据,libsvm的使用详解,SVM核函数的选择

    直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm. ...

  2. libsvm简介和函数调用参数说明

    1.      libSVM简介 libSVM是台湾林智仁(Chih-Jen Lin) 教授2001年开发的一套支持向量机库,这套库运算速度挺快,可以很方便的对数据做分类或回归.由于libSVM程序小 ...

  3. Spark 模型选择和调参

    Spark - ML Tuning 官方文档:https://spark.apache.org/docs/2.2.0/ml-tuning.html 这一章节主要讲述如何通过使用MLlib的工具来调试模 ...

  4. DL基础补全计划(三)---模型选择、欠拟合、过拟合

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

  5. PRML读书会第一章 Introduction(机器学习基本概念、学习理论、模型选择、维灾等)

    主讲人 常象宇 大家好,我是likrain,本来我和网神说的是我可以作为机动,大家不想讲哪里我可以试试,结果大家不想讲第一章.估计都是大神觉得第一章比较简单,所以就由我来吧.我的背景是统计与数学,稍懂 ...

  6. ML 04、模型评估与模型选择

    机器学习算法 原理.实现与实践——模型评估与模型选择 1. 训练误差与测试误差 机器学习的目的是使学习到的模型不仅对已知数据而且对未知数据都能有很好的预测能力. 假设学习到的模型是$Y = \hat{ ...

  7. Workflow:自定义工作流 之 模型选择

    Workflow:自定义工作流 之 模型选择 背景 毕业5年,做了4个版本的工作流框架,工作流几乎是每个企业应用开发人员必须跨过的门槛(我还没有跨过去),下面简要说一下之前的4个版本,然后重点介绍第5 ...

  8. ISLR系列:(4.3)模型选择 PCR & PLS

    Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...

  9. ISLR系列:(4.1)模型选择 Subset Selection

    Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...

随机推荐

  1. 修改计算机名或IP后Oracle10g无法启动服务的解决办法

    修改计算机名或IP后Oracle10g无法启动服务的解决办法 遇到的问题,问题产生原因不详.症状为,windows服务中有一项oracle服务启动不了,报出如下错误. Windows 不能在 本地计算 ...

  2. JS案例 - 基于vue的移动端长按手势

    ================================惯例碎碎念前言================================ 当时首先想到要做长按事件的时候,我想到的是vue内部的自 ...

  3. 0R的电阻以及NC的意义

    0欧电阻的作用: 0欧的电阻大概有以下几个功能:①做为跳线使用.这样既美观,安装也方便.②在数字和模拟等混合电路中,往往要求两个地分开,并且单点连接.我们可以用一个0欧的电阻来连接这两个地,而不是直接 ...

  4. Android Studio 第一次启动配置

    第一次启动AS前,为了避免重新下载新版本的SDK 操作如下: AS启动前,请先将bin目录的idea.properties文件中增加一行:disable.android.first.run=true ...

  5. [原]Failed to load SELinux policy. System Freezing ----redhat7or CentOS7 bug

    重启rhel7或者centos7 启动界面按 e 在启动项后面加上enforcing=0 Ctrl+x  运行修改后的grub 进入系统 编辑保存/etc/selinux/config 重启

  6. hihoCoder挑战赛28 题目1 : 异或排序

    题目1 : 异或排序 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: ...

  7. ASP.NET MVC View使用Conditional compilation symbols

    由于View(.cshtml)的运行时编译关系,在项目级别中定义的symbols是无法被直接使用的.需要在Web.config中添加compilerOptions(在View目录下的Web.confi ...

  8. 成员函数指针与高效C++委托 (delegate)

    下载实例源代码 - 18.5 Kb 下载开发包库文件 - 18.6 Kb 概要 很遗憾, C++ 标准中没能提供面向对象的函数指针. 面向对象的函数指针也被称为闭包(closures) 或委托(del ...

  9. Internet Explorer 9 已安装在此系统上

    问题: win7系统,IE11浏览器,想换成IE9,安装IE9的时候,提示错误. 解决方案: 方案一: 1.打开 控制面板--程序--程序和功能--点击打开或者关闭Windows功能,找到Intern ...

  10. linux下模拟CPU占用100%小程序

    在做一个测试时,需要模拟服务器CPU占用满的情况,在查阅相关资料后,发现网上程序不太好用, 原文在这:http://www.2cto.com/os/201304/202068.html 优化后如下: ...