回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好。

数学上,ElasticNet被定义为L1和L2正则化项的凸组合:

通过适当设置α,ElasticNet包含L1和L2正则化作为特殊情况。例如,如果用参数α设置为1来训练线性回归模型,则其等价于Lasso模型。另一方面,如果α被设置为0,则训练的模型简化为ridge回归模型。

RegParam:lambda>=0
ElasticNetParam:alpha in [0, 1]

导入包

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Column
import org.apache.spark.sql.DataFrameReader
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.DataFrameStatFunctions
import org.apache.spark.sql.functions._ import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.evaluation.RegressionEvaluator
import org.apache.spark.ml.regression.LinearRegression

导入样本数据

// Population人口,
// Income收入水平,
// Illiteracy文盲率,
// LifeExp,
// Murder谋杀率,
// HSGrad,
// Frost结霜天数(温度在冰点以下的平均天数) ,
// Area州面积
val spark = SparkSession.builder().appName("Spark Linear Regression").config("spark.some.config.option", "some-value").getOrCreate() // For implicit conversions like converting RDDs to DataFrames
import spark.implicits._ val dataList: List[(Double, Double, Double, Double, Double, Double, Double, Double)] = List(
(3615, 3624, 2.1, 69.05, 15.1, 41.3, 20, 50708),
(365, 6315, 1.5, 69.31, 11.3, 66.7, 152, 566432),
(2212, 4530, 1.8, 70.55, 7.8, 58.1, 15, 113417),
(2110, 3378, 1.9, 70.66, 10.1, 39.9, 65, 51945),
(21198, 5114, 1.1, 71.71, 10.3, 62.6, 20, 156361),
(2541, 4884, 0.7, 72.06, 6.8, 63.9, 166, 103766),
(3100, 5348, 1.1, 72.48, 3.1, 56, 139, 4862),
(579, 4809, 0.9, 70.06, 6.2, 54.6, 103, 1982),
(8277, 4815, 1.3, 70.66, 10.7, 52.6, 11, 54090),
(4931, 4091, 2, 68.54, 13.9, 40.6, 60, 58073),
(868, 4963, 1.9, 73.6, 6.2, 61.9, 0, 6425),
(813, 4119, 0.6, 71.87, 5.3, 59.5, 126, 82677),
(11197, 5107, 0.9, 70.14, 10.3, 52.6, 127, 55748),
(5313, 4458, 0.7, 70.88, 7.1, 52.9, 122, 36097),
(2861, 4628, 0.5, 72.56, 2.3, 59, 140, 55941),
(2280, 4669, 0.6, 72.58, 4.5, 59.9, 114, 81787),
(3387, 3712, 1.6, 70.1, 10.6, 38.5, 95, 39650),
(3806, 3545, 2.8, 68.76, 13.2, 42.2, 12, 44930),
(1058, 3694, 0.7, 70.39, 2.7, 54.7, 161, 30920),
(4122, 5299, 0.9, 70.22, 8.5, 52.3, 101, 9891),
(5814, 4755, 1.1, 71.83, 3.3, 58.5, 103, 7826),
(9111, 4751, 0.9, 70.63, 11.1, 52.8, 125, 56817),
(3921, 4675, 0.6, 72.96, 2.3, 57.6, 160, 79289),
(2341, 3098, 2.4, 68.09, 12.5, 41, 50, 47296),
(4767, 4254, 0.8, 70.69, 9.3, 48.8, 108, 68995),
(746, 4347, 0.6, 70.56, 5, 59.2, 155, 145587),
(1544, 4508, 0.6, 72.6, 2.9, 59.3, 139, 76483),
(590, 5149, 0.5, 69.03, 11.5, 65.2, 188, 109889),
(812, 4281, 0.7, 71.23, 3.3, 57.6, 174, 9027),
(7333, 5237, 1.1, 70.93, 5.2, 52.5, 115, 7521),
(1144, 3601, 2.2, 70.32, 9.7, 55.2, 120, 121412),
(18076, 4903, 1.4, 70.55, 10.9, 52.7, 82, 47831),
(5441, 3875, 1.8, 69.21, 11.1, 38.5, 80, 48798),
(637, 5087, 0.8, 72.78, 1.4, 50.3, 186, 69273),
(10735, 4561, 0.8, 70.82, 7.4, 53.2, 124, 40975),
(2715, 3983, 1.1, 71.42, 6.4, 51.6, 82, 68782),
(2284, 4660, 0.6, 72.13, 4.2, 60, 44, 96184),
(11860, 4449, 1, 70.43, 6.1, 50.2, 126, 44966),
(931, 4558, 1.3, 71.9, 2.4, 46.4, 127, 1049),
(2816, 3635, 2.3, 67.96, 11.6, 37.8, 65, 30225),
(681, 4167, 0.5, 72.08, 1.7, 53.3, 172, 75955),
(4173, 3821, 1.7, 70.11, 11, 41.8, 70, 41328),
(12237, 4188, 2.2, 70.9, 12.2, 47.4, 35, 262134),
(1203, 4022, 0.6, 72.9, 4.5, 67.3, 137, 82096),
(472, 3907, 0.6, 71.64, 5.5, 57.1, 168, 9267),
(4981, 4701, 1.4, 70.08, 9.5, 47.8, 85, 39780),
(3559, 4864, 0.6, 71.72, 4.3, 63.5, 32, 66570),
(1799, 3617, 1.4, 69.48, 6.7, 41.6, 100, 24070),
(4589, 4468, 0.7, 72.48, 3, 54.5, 149, 54464),
(376, 4566, 0.6, 70.29, 6.9, 62.9, 173, 97203)) val data = dataList.toDF("Population", "Income", "Illiteracy", "LifeExp", "Murder", "HSGrad", "Frost", "Area")

建立线性回归模型

    val colArray = Array("Population", "Income", "Illiteracy", "LifeExp", "HSGrad", "Frost", "Area")

    val assembler = new VectorAssembler().setInputCols(colArray).setOutputCol("features")

    val vecDF: DataFrame = assembler.transform(data)

    // 建立模型,预测谋杀率Murder
// 设置线性回归参数
val lr1 = new LinearRegression()
val lr2 = lr1.setFeaturesCol("features").setLabelCol("Murder").setFitIntercept(true)
// RegParam:正则化
val lr3 = lr2.setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
val lr = lr3 // Fit the model
val lrModel = lr.fit(vecDF) // 输出模型全部参数
lrModel.extractParamMap()
// Print the coefficients and intercept for linear regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}") val predictions = lrModel.transform(vecDF)
predictions.selectExpr("Murder", "round(prediction,1) as prediction").show // Summarize the model over the training set and print out some metrics
val trainingSummary = lrModel.summary
println(s"numIterations: ${trainingSummary.totalIterations}")
println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}")
trainingSummary.residuals.show()
println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
println(s"r2: ${trainingSummary.r2}")

代码执行结果

// 输出模型全部参数
lrModel.extractParamMap()
res15: org.apache.spark.ml.param.ParamMap =
{
linReg_2ba28140e39a-elasticNetParam: 0.8,
linReg_2ba28140e39a-featuresCol: features,
linReg_2ba28140e39a-fitIntercept: true,
linReg_2ba28140e39a-labelCol: Murder,
linReg_2ba28140e39a-maxIter: 10,
linReg_2ba28140e39a-predictionCol: prediction,
linReg_2ba28140e39a-regParam: 0.3,
linReg_2ba28140e39a-solver: auto,
linReg_2ba28140e39a-standardization: true,
linReg_2ba28140e39a-tol: 1.0E-6
} // Print the coefficients and intercept for linear regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")
Coefficients: [1.36662199778084E-4,0.0,1.1834384307116244,-1.4580829641757522,0.0,-0.010686434270049252,4.051355050528196E-6] Intercept: 109.589659881471 val predictions = lrModel.transform(vecDF)
predictions: org.apache.spark.sql.DataFrame = [Population: double, Income: double ... 8 more fields] predictions.selectExpr("Murder", "round(prediction,1) as prediction").show
+------+----------+
|Murder|prediction|
+------+----------+
| 15.1| 11.9|
| 11.3| 11.0|
| 7.8| 9.5|
| 10.1| 8.6|
| 10.3| 9.6|
| 6.8| 4.3|
| 3.1| 4.2|
| 6.2| 7.5|
| 10.7| 9.3|
| 13.9| 12.3|
| 6.2| 4.7|
| 5.3| 4.6|
| 10.3| 8.8|
| 7.1| 6.6|
| 2.3| 3.5|
| 4.5| 3.9|
| 10.6| 8.9|
| 13.2| 13.2|
| 2.7| 6.3|
| 8.5| 7.8|
+------+----------+
only showing top 20 rows // Summarize the model over the training set and print out some metrics
val trainingSummary = lrModel.summary
trainingSummary: org.apache.spark.ml.regression.LinearRegressionTrainingSummary = org.apache.spark.ml.regression.LinearRegressionTrainingSummary@68a83d76 println(s"numIterations: ${trainingSummary.totalIterations}")
numIterations: 11 println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}")
objectiveHistory: List(0.49000000000000016, 0.3919242806809093, 0.19908078426904946, 0.1901453492751914, 0.17981874256031405, 0.17878173084286247, 0.1787617816935607, 0.17875431854661641, 0.1
7874702637141196, 0.17874512271568685, 0.1787449876896829)
trainingSummary.residuals.show()
+--------------------+
| residuals|
+--------------------+
| 3.2200068116713023|
| 0.2745518816306607|
| -1.6535887417767414|
| 1.485762696757325|
| 0.6509766532389172|
| 2.457688146554534|
| -1.0675250558261182|
| -1.2879164685248439|
| 1.3672723619868314|
| 1.6125000289597242|
| 1.532060517905248|
| 0.6931301635074645|
| 1.5163001982000175|
| 0.46227066807431605|
| -1.2044058248740273|
| 0.6032541157521649|
| 1.7201545753635|
|-0.01942937427384...|
| -3.632947522687547|
| 0.7077675962948007|
+--------------------+
only showing top 20 rows println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
RMSE: 1.6663615527314546 println(s"r2: ${trainingSummary.r2}")
r2: 0.7920794990832152

模型调优,用Train-Validation Split

val colArray = Array("Population", "Income", "Illiteracy", "LifeExp", "HSGrad", "Frost", "Area")

val vecDF: DataFrame = new VectorAssembler().setInputCols(colArray).setOutputCol("features").transform(data)

val Array(trainingDF, testDF) = vecDF.randomSplit(Array(0.9, 0.1), seed = 12345)

// 建立模型,预测谋杀率Murder,设置线性回归参数
val lr = new LinearRegression().setFeaturesCol("features").setLabelCol("Murder").fit(trainingDF) // 设置管道
val pipeline = new Pipeline().setStages(Array(lr)) // 建立参数网格
val paramGrid = new ParamGridBuilder().addGrid(lr.fitIntercept).addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0)).addGrid(lr.maxIter, Array(10, 100)).build() // 选择(prediction, true label),计算测试误差。
// 注意RegEvaluator.isLargerBetter,评估的度量值是大的好,还是小的好,系统会自动识别
val RegEvaluator = new RegressionEvaluator().setLabelCol(lr.getLabelCol).setPredictionCol(lr.getPredictionCol).setMetricName("rmse") val trainValidationSplit = new TrainValidationSplit().setEstimator(pipeline).setEvaluator(RegEvaluator).setEstimatorParamMaps(paramGrid).setTrainRatio(0.8) // 数据分割比例 // Run train validation split, and choose the best set of parameters.
val tvModel = trainValidationSplit.fit(trainingDF) // 查看模型全部参数
tvModel.extractParamMap() tvModel.getEstimatorParamMaps.length
tvModel.getEstimatorParamMaps.foreach { println } // 参数组合的集合 tvModel.getEvaluator.extractParamMap() // 评估的参数 tvModel.getEvaluator.isLargerBetter // 评估的度量值是大的好,还是小的好 tvModel.getTrainRatio // 用最好的参数组合,做出预测
tvModel.transform(testDF).select("features", "Murder", "prediction").show()

调优代码执行结果

// 查看模型全部参数
tvModel.extractParamMap()
res45: org.apache.spark.ml.param.ParamMap =
{
tvs_5de7d3dd1977-estimator: pipeline_062a1dffe557,
tvs_5de7d3dd1977-estimatorParamMaps: [Lorg.apache.spark.ml.param.ParamMap;@60298de1,
tvs_5de7d3dd1977-evaluator: regEval_05204824acb9,
tvs_5de7d3dd1977-seed: -1772833110,
tvs_5de7d3dd1977-trainRatio: 0.8
} tvModel.getEstimatorParamMaps.length
res46: Int = 12 tvModel.getEstimatorParamMaps.foreach { println } // 参数组合的集合
{
linReg_75628a5554b4-elasticNetParam: 0.0,
linReg_75628a5554b4-fitIntercept: true,
linReg_75628a5554b4-maxIter: 10
}
{
linReg_75628a5554b4-elasticNetParam: 0.0,
linReg_75628a5554b4-fitIntercept: true,
linReg_75628a5554b4-maxIter: 100
}
{
linReg_75628a5554b4-elasticNetParam: 0.0,
linReg_75628a5554b4-fitIntercept: false,
linReg_75628a5554b4-maxIter: 10
}
{
linReg_75628a5554b4-elasticNetParam: 0.0,
linReg_75628a5554b4-fitIntercept: false,
linReg_75628a5554b4-maxIter: 100
}
{
linReg_75628a5554b4-elasticNetParam: 0.5,
linReg_75628a5554b4-fitIntercept: true,
linReg_75628a5554b4-maxIter: 10
}
{
linReg_75628a5554b4-elasticNetParam: 0.5,
linReg_75628a5554b4-fitIntercept: true,
linReg_75628a5554b4-maxIter: 100
}
{
linReg_75628a5554b4-elasticNetParam: 0.5,
linReg_75628a5554b4-fitIntercept: false,
linReg_75628a5554b4-maxIter: 10
}
{
linReg_75628a5554b4-elasticNetParam: 0.5,
linReg_75628a5554b4-fitIntercept: false,
linReg_75628a5554b4-maxIter: 100
}
{
linReg_75628a5554b4-elasticNetParam: 1.0,
linReg_75628a5554b4-fitIntercept: true,
linReg_75628a5554b4-maxIter: 10
}
{
linReg_75628a5554b4-elasticNetParam: 1.0,
linReg_75628a5554b4-fitIntercept: true,
linReg_75628a5554b4-maxIter: 100
}
{
linReg_75628a5554b4-elasticNetParam: 1.0,
linReg_75628a5554b4-fitIntercept: false,
linReg_75628a5554b4-maxIter: 10
}
{
linReg_75628a5554b4-elasticNetParam: 1.0,
linReg_75628a5554b4-fitIntercept: false,
linReg_75628a5554b4-maxIter: 100
} tvModel.getEvaluator.extractParamMap() // 评估的参数
res48: org.apache.spark.ml.param.ParamMap =
{
regEval_05204824acb9-labelCol: Murder,
regEval_05204824acb9-metricName: rmse,
regEval_05204824acb9-predictionCol: prediction
} tvModel.getEvaluator.isLargerBetter // 评估的度量值是大的好,还是小的好
res49: Boolean = false tvModel.getTrainRatio
res50: Double = 0.8 tvModel.transform(testDF).select("features", "Murder", "prediction").show()
+--------------------+------+------------------+
| features|Murder| prediction|
+--------------------+------+------------------+
|[1058.0,3694.0,0....| 2.7| 6.917232043935343|
|[2341.0,3098.0,2....| 12.5|14.760329005533478|
|[472.0,3907.0,0.6...| 5.5| 4.182074651181182|
|[812.0,4281.0,0.7...| 3.3| 4.915905572667441|
|[2816.0,3635.0,2....| 11.6|14.219231061596304|
|[4589.0,4468.0,0....| 3.0| 3.483554528704758|
+--------------------+------+------------------+

Spark2 Linear Regression线性回归的更多相关文章

  1. Linear Regression(线性回归)(一)—LMS algorithm

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 1.问题的引出 先从一个简单的例子说起吧,房地产公司有一些关于Po ...

  2. Linear Regression 线性回归

    Motivation 问题描述 收集到某一地区的房子面积和房价的数据(x, y)42组,对于一套已知面积的房子预测其房价?   由房价数据可视化图可以看出,可以使用一条直线拟合房价.通过这种假设得 ...

  3. Linear Regression(线性回归)(二)—正规方程(normal equations)

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 在上篇博客中,我们提出了线性回归的概念,给出了一种使代价函数最小的 ...

  4. 线性回归 Linear regression(3) 线性回归的概率解释

    这篇博客从一种方式推导了Linear regression 线性回归的概率解释,内容来自Standford公开课machine learning中Andrew老师的讲解. 线性回归的概率解释 在Lin ...

  5. Kernel Methods (3) Kernel Linear Regression

    Linear Regression 线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为: 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中: \(x ...

  6. 线性回归、梯度下降(Linear Regression、Gradient Descent)

    转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...

  7. Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

    原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...

  8. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  9. 机器学习之多变量线性回归(Linear Regression with multiple variables)

    1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...

随机推荐

  1. python打造线程池

    # coding=utf-8 import threading import Queue import time import traceback class ThreadPoolExecutor(o ...

  2. 【scala】 scala 基础(一)

    至于什么是scala,摘录一段 维基百科的解释: scala 下载 安装 省略 1.环境变量配置完成后 命令行报错,因为scala 的安装路径里边包含空格 修改后即可.由于我的本地包含空格,此处CLI ...

  3. [Module] 06 - DataBinding and MVVM

    下一步学习列表: Android DataBinding使用总结(一) *** Android DataBinding使用总结(二) Android DataBinding使用总结(三)列表展示 An ...

  4. 18个不常见的C#关键字,您使用过几个?

    转自:http://www.cnblogs.com/zhuqil/archive/2010/04/09/UnCommon-Csharp-keywords-A-Look.html 1.__arglist ...

  5. PHP从数组中找到指定元素的位置

    群里有人问,有个数组五个元素 分为1到5  现在要求 循环找出3元素的索引,怎么做性能才是最高. 我不知道哪个性能最高,但是我想提出可以用多种方式进行查找,然后进行比较选择. 我想,最简单最基础的 应 ...

  6. Express框架中如何引用ejs模板引擎

    1.如何在项目中安装ejs模板引擎 在NodeJS指南中利用利用以下命令建立网站的基本结构: express -t ejs microblog 运行这个命令后继续运行 cd microblog &am ...

  7. 【Android】amr播放

    http://download.csdn.net/download/r8hzgemq/4877495 http://www.cnblogs.com/fengzhblog/archive/2013/08 ...

  8. /usr/bin/ld: cannot find -lxxx 的解决办法

    /usr/bin/ld: cannot find -lxxx 的解决办法 在软件编译过程中,经常会碰到类似这样的编译错误: /usr/bin/ld: cannot find -lhdf5 这表示找不到 ...

  9. Linux下的/proc目录介绍

    proc被称为虚拟文件系统,它是一个控制中心,可以通过更改其中某些文件改变内核运行状态, 它也是内核提空给我们的查询中心,用户可以通过它查看系统硬件及当前运行的进程信息. Linux中许多工具的数据来 ...

  10. async await yield

    问题:async 和yield有什么区别? 无奈只能用“书到用时方恨少”来解释这个问题了.其实也是自己从开始编程就接触的是nodejs中的async 以及await ,yield几乎.貌似好像都没使用 ...