Description

用字符矩阵来表示一个8x8的棋盘,'.'表示是空格,'P'表示人质,'K'表示骑士。每一步,骑士可以移动到他周围的8个方格中的任意一格。如果你移动到的格子中有人质(即'P'),你将俘获他。但不能移到出棋盘或当前是'K'的格子中。请问最少要移动多少步骑士才能俘获所有的人质。

Input Format

第一行一个整数N(<=5),表示有多少个棋盘。即多组测试数据。每一组有8行,每行8个字符。字符只有'.',大写'P',大写'K'三种字符。'P'和'K'的个数范围都在[1,10]。

Output Format

有N行,每行只一个整数,相应棋盘俘获全部人质所需要的最少步数。

Sample Input

2

P......P

........

........

........

...KK...

........

........

P......P

.....P.P

..K....P

....K...

..PP...P

...K..KK

........

K.......

KP.K....

Sample Output

20

9

Solution

多亏参考了省队队长的代码,%yh,

可以发现骑士和人质数量极小,考虑状压DP。

虽然骑士有好多个,实际上他们不影响,可以先分别做DP,不妨让F[k][i][S]表示第k个骑士在第i个点且俘获状态为S的最少步数,易得F[k][j][S|1<<(j-1)]=min{f[k][i][S]+ptp[i][j]},其中ptp[i][j]表示人质i到人质j的最少步数

这里有个关键的地方就是骑士可以向8个方向移动,所以2点之间最少步数应为max(|x1-x2|,|y1-y2|)

然后记录每个骑士i对于状态S的最少步数,我的代码是用F[k][0][S]表示

接下来在做一次DP,用G[i][S]表示前i个骑士对于状态S的最少步数,

则G[i][S]=min{G[i-1][S^S2]+F[i][S2]},1<=S2<=最终状态,且(S | S2) == S,答案就很明显了

Code

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define N 12
using namespace std; struct info {
int x, y;
} k[N], p[N];
int T, knum, pnum, dis[N][N], f[N][N][1 << N], ptp[N][N], ans[N][1 << N]; inline void Init() {
memset(dis, 0, sizeof(dis));
knum = pnum = 0;
for (int i = 1; i <= 8; ++i)
for (int j = 1; j <= 8; ++j) {
char ch = getchar();
while (ch != '.' && ch != 'K' && ch != 'P') ch = getchar();
if (ch == 'K') k[++knum] = (info) {i, j};
if (ch == 'P') p[++pnum] = (info) {i, j};
} for (int i = 1; i <= knum; ++i)
for (int j = 1; j <= pnum; ++j) {
int x1 = k[i].x, y1 = k[i].y, x2 = p[j].x, y2 = p[j].y;
dis[i][j] = max(fabs(x1 - x2), fabs(y1 - y2));
}
for (int i = 1; i <= pnum; ++i)
for (int j = i + 1; j <= pnum; ++j) {
int x1 = p[i].x, y1 = p[i].y, x2 = p[j].x, y2 = p[j].y;
ptp[i][j] = ptp[j][i] = max(fabs(x1 - x2), fabs(y1 - y2));
}
} inline void DP(int k) {
for (int i = 1; i <= pnum; ++i)
f[k][i][1 << (i - 1)] = dis[k][i];
for (int S = 1; S < (1 << pnum); ++S)
for (int i = 1; i <= pnum; ++i)
if (S & (1 << (i - 1)))
for (int j = 1; j <= pnum; ++j)
if (!(S & (1 << (j - 1))))
f[k][j][S | (1 << (j - 1))] = min(f[k][j][S | (1 << (j - 1))], f[k][i][S] + ptp[i][j]);
} int main() {
scanf("%d", &T);
while (T--) {
Init(); memset(f, 0x3f, sizeof(f));
for (int k = 1; k <= knum; ++k) {
DP(k);
for (int S = 1; S < (1 << pnum); ++S)
for (int i = 1; i <= pnum; ++i)
f[k][0][S] = min(f[k][0][S], f[k][i][S]);
} memset(ans, 0x3f, sizeof(ans));
ans[0][0] = 0;
for (int i = 1; i <= knum; ++i) {
ans[i][0] = 0;
for (int S = 1; S < (1 << pnum); ++S) {
ans[i][S] = ans[i - 1][S];
for (int g = 1; g < (1 << pnum); ++g) {
if ((S | g) != S) continue;
ans[i][S] = min(ans[i][S], ans[i - 1][S ^ g] + f[i][0][g]);
}
}
}
printf("%d\n", ans[knum][(1 << pnum) - 1]);
}
return 0;
}

Kings(状压DP)的更多相关文章

  1. SGU 223 Little Kings(状压DP)

    Description 用字符矩阵来表示一个8x8的棋盘,'.'表示是空格,'P'表示人质,'K'表示骑士.每一步,骑士可以移动到他周围的8个方格中的任意一格.如果你移动到的格子中有人质(即'P'), ...

  2. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  3. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  4. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  5. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  6. 【BZOJ2073】[POI2004]PRZ 状压DP

    [BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...

  7. bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)

    数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...

  8. HDU 1074 Doing Homework (状压dp)

    题意:给你N(<=15)个作业,每个作业有最晚提交时间与需要做的时间,每次只能做一个作业,每个作业超出最晚提交时间一天扣一分 求出扣的最小分数,并输出做作业的顺序.如果有多个最小分数一样的话,则 ...

  9. 【BZOJ1688】[Usaco2005 Open]Disease Manangement 疾病管理 状压DP

    [BZOJ1688][Usaco2005 Open]Disease Manangement 疾病管理 Description Alas! A set of D (1 <= D <= 15) ...

随机推荐

  1. 1.字符串池化(intern)机制及拓展学习

    1.字符串intern机制 用了这么久的python,时刻和字符串打交道,直到遇到下面的情况: a = "hello" b = "hello" print(a ...

  2. Design Pattern ->Abstract Factory

    Layering & Contract Philosophy With additional indirection Abstract Factory //The example code i ...

  3. 5步玩转Power BI Embedded,老司机全程带路解析

    最近,由世纪互联运营的 Microsoft Azure 发布了一个超级炫酷的服务 Power BI Embedded,该服务可以通过 REST API 和 Power BI SDK 将 Power B ...

  4. java最大最小堆

    堆是一种经过排序的完全二叉树,其中任一非终端节点的数据值均不大于(或不小于)其左孩子和右孩子节点的值. 最大堆和最小堆是二叉堆的两种形式. 最大堆:根结点的键值是所有堆结点键值中最大者. 最小堆:根结 ...

  5. vue短信验证码组件

    Vue.component('timerBtn',{ template: '<button v-on:click="run" :disabled="disabled ...

  6. Android(java)学习笔记62:android.intent.action.MAIN 与 android.intent.category.LAUNCHER 理解

    1. 先看看网路上的说法: android.intent.action.MAIN 决定应用程序最先启动的 Activity android.intent.category.LAUNCHER 决定应用程 ...

  7. hash函数的选择

    哈稀函数按照定义可以实现一个伪随机数生成器(PRNG),从这个角度可以得到一个公认的结论:哈希函数之间性能的比较可以通过比较其在伪随机生成方面的比较来衡量. 一般来说,对任意一类的数据存在一个理论上完 ...

  8. 2018.9.6 Java常考知识点总结

    一 Java中的值传递和引用传递(非常重要) 首先要明确的是:"对象传递(数组.类.接口)是引用传递,原始类型数据(整型.浮点型.字符型.布尔型)传递是值传递." 那么什么是值传递 ...

  9. 2017.9.29 web网上答题及其自动评测系统

    1. 设计计一个网上答题及其自动评测系统,首先是试题页面的设计及其解答的提交, 其次是当提交解答之后,系统自动评阅并给出结果. 分析:需要两个jsp页面:一个是提交信息的页面,另一个是获取提交信息的页 ...

  10. wordpress问题集锦

    1.内容不自动换行 找到对应的样式,添加如下代码,width根据具体情况修改. width:640px;white-space:normal;word-break:break-all;word-wra ...