浅谈线段树合并:https://www.cnblogs.com/AKMer/p/10251001.html

题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=2733

对每个联通块维护一个值域线段树,然后该合并合并该查询查询就好了。

时间复杂度:\(O(nlogn)\)

空间复杂度:\(O(nlogn)\)

代码如下:

#include <cstdio>
using namespace std; const int maxn=1e5+5; char s[5];
int n,m,q;
int fa[maxn],rk[maxn],id[maxn],rt[maxn]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int find(int x) {
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
} struct segment_tree {
int tot;
int sum[maxn*20],ls[maxn*20],rs[maxn*20]; void update(int p) {
sum[p]=sum[ls[p]]+sum[rs[p]];
} void change(int &p,int l,int r,int pos) {
if(!p)p=++tot;
if(l==r) {sum[p]++;return;}
int mid=(l+r)>>1;
if(pos<=mid)change(ls[p],l,mid,pos);
else change(rs[p],mid+1,r,pos);
update(p);
} int query(int p,int l,int r,int rk) {
if(l==r)return l;
int mid=(l+r)>>1;
if(rk<=sum[ls[p]])return query(ls[p],l,mid,rk);
else return query(rs[p],mid+1,r,rk-sum[ls[p]]);
} int merge(int a,int b) {
if(!a||!b)return a+b;
ls[a]=merge(ls[a],ls[b]);
rs[a]=merge(rs[a],rs[b]);
update(a);return a;
}
}T; int main() {
n=read(),m=read();
for(int i=1;i<=n;i++)
rk[i]=read(),id[rk[i]]=i,fa[i]=i;
for(int i=1;i<=m;i++) {
int a=find(read()),b=find(read());
if(a!=b)fa[a]=b;
}q=read();
for(int i=1;i<=n;i++) {
int a=find(i);
T.change(rt[a],1,n,rk[i]);
}
for(int i=1;i<=q;i++) {
scanf("%s",s+1);
if(s[1]=='Q') {
int a=find(read()),k=read();
if(T.sum[rt[a]]<k) puts("-1");
else printf("%d\n",id[T.query(rt[a],1,n,k)]);
}
else {
int a=find(read()),b=find(read());
if(a!=b) {
fa[a]=b;
rt[b]=T.merge(rt[b],rt[a]);
}
}
}
return 0;
}

BZOJ2733:[HNOI2012]永无乡的更多相关文章

  1. bzoj2733: [HNOI2012]永无乡 启发式合并

    地址:http://www.lydsy.com/JudgeOnline/problem.php?id=2733 题目: 2733: [HNOI2012]永无乡 Time Limit: 10 Sec   ...

  2. bzoj2733: [HNOI2012]永无乡(splay)

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3778  Solved: 2020 Description 永 ...

  3. [Bzoj2733][Hnoi2012] 永无乡(BST)(Pb_ds tree)

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4108  Solved: 2195[Submit][Statu ...

  4. [bzoj2733][HNOI2012]永无乡_权值线段树_线段树合并

    永无乡 bzoj-2733 HNOI-2012 题目大意:题目链接. 注释:略. 想法: 它的查询操作非常友善,就是一个联通块内的$k$小值. 故此我们可以考虑每个联通块建一棵权值线段树. 这样的话每 ...

  5. BZOJ2733 [HNOI2012]永无乡 【线段树合并】

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. [BZOJ2733] [HNOI2012] 永无乡 (splay启发式合并)

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

  7. BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并

    题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...

  8. bzoj2733: [HNOI2012]永无乡 线段树合并

    永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...

  9. BZOJ2733: [HNOI2012]永无乡(线段树合并)

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

  10. BZOJ2733 [HNOI2012]永无乡

    直接平衡树启发式合并就好了...貌似是个很高端的东西.. 貌似可以证明splay的启发式合并是均摊$O(nlogn)$的...而其他平衡树都不行,所以其他的复杂度都是$O(nlog^2n)的$的 所以 ...

随机推荐

  1. 【BZOJ1899】[Zjoi2004]Lunch 午餐 贪心+DP

    [BZOJ1899][Zjoi2004]Lunch 午餐 Description 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时 ...

  2. git reset和git revert

    1 git reset commit-id 直接回到某次提交,该次commit-id之后的提交都会被删除. --hard,将index和本地都恢复到指定的commit版本. 2 git revert ...

  3. 【基于rssi室内定位报告】rssi分布情况标识位置

    import matplotlib matplotlib.use('Agg') import numpy as np from numpy import array from matplotlib i ...

  4. 我的Android进阶之旅------>Android关于Log的一个简单封装

    android.util.Log类,可以方便地用于在编码调试过程中打印日志.但是在发布后的产品中,如果有太多的日志打印,则会严重地影响性能.对android.util.Log类做一个简单的封装,当产品 ...

  5. json遍历

    $.each(item.attributes,function (name,value) { });

  6. Hive与Hbase关系整合

    近期工作用到了Hive与Hbase的关系整合,虽然从网上参考了很多的资料,但是大多数讲的都不是很细,于是决定将这块知识点好好总结一下供大家分享,共同掌握! 本篇文章在具体介绍Hive与Hbase整合之 ...

  7. 每天一个Linux命令(16)which命令

    which命令用于查找并显示给定命令的绝对路径. 环境变量PATH中保存了查找命令时需要遍历的目录.which指令会在环境变量$PATH设置的目录里查找符合条件的文件.也就是说,使用which命令,就 ...

  8. GUI菜单——菜单条、菜单、子条目之间关系

    菜单:注意区分三个概念:菜单条.菜单.菜单项 将菜单条添加到窗体,菜单条下面包括菜单,菜单下面可以使菜单或者菜单项 菜单项是最后一个.菜单后面有三角标示. 菜单条[文件] 子菜单--子条目 子条目 示 ...

  9. Data Structure Binary Tree: Convert a given Binary Tree to Doubly Linked List

    http://www.geeksforgeeks.org/in-place-convert-a-given-binary-tree-to-doubly-linked-list/ #include &l ...

  10. 【五】MongoDB管理之生产环境说明

    下面详细说明影响mongodb的系统配置,尤其在生产环境上. 1.生产环境推荐的平台 Amazon Linux Debian 7.1 Red Hat / CentOS 6.2+ SLES 11+ Ub ...