bzoj 4815 小Q的表格 —— 反演+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815
思路就和这里一样:https://blog.csdn.net/leolyun/article/details/70146612
不知为何乘逆元就错了,必须直接除...不过题目保证了是整数,所以直接除也没问题;
然后重新学习了一下分块的简洁写法,就能A了hhh
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=4e6+,mod=1e9+,base=,xb=;
int n,cnt,pri[xn],phi[xn],g[xn],blk[xn],s[xn],pls[xb];
bool vis[xn];
ll rd()
{
ll ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void init()
{
phi[]=;
for(int i=;i<=n;i++)
{
if(!vis[i])pri[++cnt]=i,phi[i]=i-;
for(int j=;j<=cnt&&(ll)i*pri[j]<=n;j++)
{
vis[i*pri[j]]=;
if(i%pri[j])phi[i*pri[j]]=(ll)phi[i]*(pri[j]-)%mod;
else {phi[i*pri[j]]=(ll)phi[i]*pri[j]%mod; break;}
}
}
for(int i=;i<=n;i++)g[i]=(ll)i*i%mod*phi[i]%mod;
for(int i=;i<=n;i++)g[i]=upt(g[i-]+g[i]);
}
void init2()
{
for(int i=;i<=n;i++)blk[i]=(i-)/base+;
for(int i=;i<=n;i++)s[i]=(s[i-]+(ll)i*i)%mod;
}
void change(int d,ll x)//add x
{
for(int i=d;blk[i]==blk[d]&&i<=n;i++)s[i]=upt(s[i]+x);
for(int i=blk[d]+;i<=blk[n];i++)pls[i]=upt(pls[i]+x);
}
int cal(int ps)
{
return upt(pls[blk[ps]]+s[ps]);
}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int main()
{
int m=rd(); n=rd();
init(); init2(); ll x;
for(int i=,a,b,k;i<=m;i++)
{
a=rd(); b=rd(); x=rd(); k=rd();
int d=gcd(a,b);
//int t1=(ll)d*pw(a,mod-2)%mod,t2=(ll)d*pw(b,mod-2)%mod;
ll t=((ll)a/d)*(b/d); x=(x/t)%mod;//
change(d,upt(x-cal(d)+cal(d-)));
//change(d,x*t1%mod*t2%mod);
int ans=;
for(int j=,nxt;j<=k;j=nxt+)
{
nxt=k/(k/j);
ans=(ans+(ll)g[k/j]*upt(cal(nxt)-cal(j-)))%mod;
}
printf("%d\n",ans);
}
return ;
}
bzoj 4815 小Q的表格 —— 反演+分块的更多相关文章
- bzoj 4815 [Cqoi2017]小Q的表格——反演+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的. 分块维护 ...
- [CQOI2017]小Q的表格(数论+分块)
题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...
- [BZOJ4815][CQOI2017]小Q的表格 数论+分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4815 题目中所给条件中的$(a,a+b)$和$(a,b)$的关系很瞩目. 然后大家都知道$ ...
- [CQOI2017]小Q的表格——反演好题
zhoutb2333的题解 难得一见的新颖反演题. 一眼看可能不是反演题. 修改影响别的,很恶心. 所以考虑化简f的联系式,发现和gcd有关 于是考虑用gcd来表示所有的gcd(a,b)=g的所有f( ...
- bzoj 4815: [Cqoi2017]小Q的表格 [数论]
4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...
- 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)
[BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...
- [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)
4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 832 Solved: 342[Submit][Statu ...
- 【CQOI2017】小Q的表格
[CQOI2017]小Q的表格 稍加推导就会发现\(f(a,b)=a\cdot b\cdot h(gcd(a,b))\). 初始时\(h(n)=1\). 询问前\(k\)行\(k\)列时我们就反演: ...
- 洛咕 P3700 [CQOI2017]小Q的表格
洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...
随机推荐
- jquery点击一组按钮中的一个,跳转至对应页面处理策略。(如点击订单列表中的一个订单,跳转至该订单的详情)
将改组按钮的数据设置一个相同的属性(如class),然后每个按钮设置不同的id 当用户点击属性为class的按钮,根据id属性来判断点击的是哪个按钮,然后进行相关操作. 代码示例: <scrip ...
- 洛谷 2233 [HNOI2002]公交车路线
题目戳这里 一句话题意 一个大小为8的环,求从1到5正好n步的方案数(途中不能经过5). Solution 巨说这个题目很水 应该是比较容易的DP,直接从把左边和右边的方案数加起来即可,但是有几个需要 ...
- CentOS7安装MySQL8.0小计
之前讲配置文件和权限的时候有很多MySQL8的知识,有同志说安装不太一样,希望发个文,我这边简单演示一下 1.环境安装 下载MySQL提供的CentOS7的yum源 官方文档:<https:// ...
- Oracle数据库获取uuid函数
Oracle新建系统表时,要求主键为32位uuid,推測Oracle肯定会提供相关的函数. 翻阅相关文档,果然发现Oracle提供的函数 sys_guid() 用于获取32位uuid,简单使用为 se ...
- linux 中解压与压缩 常用操作详细讲解
平时有时候 会在服务器进行一些文件的操作,比如安装一些服务与软件等等,都有解压操作,一般在 导出一些简单的服务器文件,也是先压缩后再导出,因此,在这里根据平时用到解压与压缩命令的频率来记录下: 1.最 ...
- ALV 红绿灯编写
[转http://lz357502668.blog.163.com/blog/static/164967432012417102133216/]ALV 指示燈 編寫 1,在內表中申請一個字段. 該字段 ...
- ceph基本架构简述
1. 介绍 云硬盘是IaaS云平台的重要组成部分,云硬盘给虚拟机提供了持久的块存储设备.目前的AWS 的EBS(Elastic Block store)给Amazon的EC2实例提供了高可用高可靠的块 ...
- Chrome Extension 扩展程序 小白入门
Chrome Extension 扩展程序 前请说明:本文适用于之前从来没有接触过chrome extension扩展程序的同学~ 编写demo 创建项目文件夹chrome_ext_demo,在项目根 ...
- ubuntu14.04下svn版本管理系统的安装及常用命令的使用整理
ubuntu14.04下安装svn$sudo apt-get install subversion 执行这一步就安装完成了,在ubuntu先安装很方便 安装完成后,创建版本库目录,由于是本地环境,就在 ...
- Java多线程系列 面试题
1. https://blog.csdn.net/jjj19891128/article/details/24393661 多线程经典面试题 2. https://blog.csdn.net/ll6 ...