题目描述

有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且输出有多少种砍的方法使得总长度最大的一段长度最小. 并将结果mod 10007。。。

输入

输入文件第一行有2个数n,m.接下来n行每行一个正整数Li,表示第i根木棍的长度.n<=50000,0<=m<=min(n-1,1000),1<=Li<=1000.

输出

输出有2个数, 第一个数是总长度最大的一段的长度最小值, 第二个数是有多少种砍的方法使得满足条件.

样例输入

3 2
1
1
10

样例输出

10 2


题解

二分+dp

第一问即 noip2015跳石头 。。。一眼二分,然后看不满足条件时就切一刀,判断是否小于m。

第二问求方案数,很显然是个dp。

设$f[i][j]$表示前$i$个分了$j$段的方案数,那么状态转移方程应该为$f[i][j]=\sum\limits_{len(t+1,i)\le ans1}f[t][j-1]$,边界条件$f[0][0]=1$,其中$len(a,b)表示$[a,b]$所有木棍的长度总和。

可以发现$t$的取值范围是一段连续的单调的区间,因此可以用类似双指针的方法扫出$t$的取值左端点。然后$\sum$又可以使用前缀和维护,这样时间复杂度就降为了$O(nm)$。

然而这样还会炸空间。。。

因此使用滚动数组就好了,显然第二维是可以滚动的,因此先枚举第二维,滚动一下就好了。

#include <cstdio>
#include <algorithm>
#define N 50010
#define mod 10007
using namespace std;
int n , m , a[N] , sl[N] , f[2][N] , sum[2][N];
bool judge(int mid)
{
int i , now = 0 , cnt = 0;
for(i = 1 ; i <= n ; i ++ )
{
if(now + a[i] > mid) now = 0 , cnt ++ ;
now += a[i];
}
return cnt <= m;
}
int main()
{
int i , j , l = 0 , r = 0 , mid , ans = -1 , p = 0 , ret = 0 , d;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , l = max(l , a[i]) , r += a[i] , sl[i] = sl[i - 1] + a[i];
while(l <= r)
{
mid = (l + r) >> 1;
if(judge(mid)) ans = mid , r = mid - 1;
else l = mid + 1;
}
printf("%d " , ans);
for(i = 0 ; i <= n ; i ++ ) sum[0][i] = 1;
for(i = d = 1 ; i <= m + 1 ; i ++ , d ^= 1)
{
sum[d][0] = p = 0;
for(j = 1 ; j <= n ; j ++ )
{
while(sl[j] - sl[p] > ans) p ++ ;
f[d][j] = sum[d ^ 1][j - 1];
if(p) f[d][j] = (f[d][j] - sum[d ^ 1][p - 1] + mod) % mod;
sum[d][j] = (sum[d][j - 1] + f[d][j]) % mod;
}
ret = (ret + f[d][n]) % mod;
}
printf("%d\n" , ret);
return 0;
}

【bzoj1044】[HAOI2008]木棍分割 二分+dp的更多相关文章

  1. bzoj1044: [HAOI2008]木棍分割 二分+dp

    有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且输出有多少 ...

  2. [BZOJ1044][HAOI2008]木棍分割 二分+贪心+dp+前缀和优化

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4112  Solved: 1577 [Submit][St ...

  3. Luogu P2511 [HAOI2008]木棍分割 二分+DP

    思路:二分+DP 提交:3次 错因:二分写萎了,$cnt$记录段数但没有初始化成$1$,$m$切的次数没有$+1$ 思路: 先二分答案,不提: 然后有个很$naive$的$DP$: 设$f[i][j] ...

  4. [bzoj1044][HAOI2008][木棍分割] (二分+贪心+dp+队列优化)

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  5. [BZOJ1044][HAOI2008]木棍分割 二分 + 单调队列优化dp + 滚动数组优化dp

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  6. BZOJ1044 [HAOI2008]木棍分割 【二分+Dp】

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4281  Solved: 1644 [Submit][St ...

  7. BZOJ 1044: [HAOI2008]木棍分割(二分答案 + dp)

    第一问可以二分答案,然后贪心来判断. 第二问dp, dp[i][j] = sigma(dp[k][j - 1]) (1 <= k <i, sum[i] - sum[k] <= ans ...

  8. bzoj1044[HAOI2008]木棍分割 单调队列优化dp

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4314  Solved: 1664[Submit][Stat ...

  9. BZOJ1044: [HAOI2008]木棍分割

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1580  Solved: 567[Submit][Statu ...

随机推荐

  1. 洛谷题解:P1209 【[USACO1.3]修理牛棚 Barn Repair】

    原题传送门:https://www.luogu.org/problemnew/show/P1209 首先,这是一道贪心题.  我们先来分析它的贪心策略.  例如,样例:  4 50 18  3 4 6 ...

  2. FAT32中文版分析+补充(2)

    从Offset 36(0x24)开始FAT12/16的内容开始区别于FAT32,现在分两个表格列出来,下表为FAT12/16的内容: 名称 Offset(Byte) 大小(Byte) 描述 BS_dr ...

  3. Vim---配置实用的.vimrc文件

    配置自己电脑的vim,配置一个根据个人习惯使用的.vimrc文件.我的有以下功能等,读者可以根据自己的 个人喜好去配置自己的vim. 1.自动插入文件头 ,新建C.C++源文件时自动插入表头:包括文件 ...

  4. ubuntu16 升级pip3后报错File "/usr/bin/pip3", line 9, in <module> from pip import main ImportError: cannot import name 'main'

    问题:ubuntu16 执行pip3 install --upgrade pip之后,pip3执行出错. Traceback (most recent call last): File "/ ...

  5. Docker自学纪实(四)搭建LNMP部署wordpress

    我们在工作中最常用的就是LNMP网站平台 这个架构呢,是整个公司网站的核心 如果对于访问量较小的网站,可以直接在服务器上面部署 而如果是访问量很大的网站,那负载就是个很大的问题. 要么需要再买很多服务 ...

  6. IntelliJ IDEA 12 创建Web项目 教程 超详细版【转】

    IntelliJ IDEA 12 新版本发布 第一时间去官网看了下  黑色的主题 很给力 大体使用了下  对于一开始就是用eclipse的童鞋们 估计很难从eclipse中走出来 当然 我也很艰难的走 ...

  7. SpringCloud框架搭建+实际例子+讲解+系列五

    (4)服务消费者,面向前端或者用户的服务 本模块涉及到很多知识点:比如Swagger的应用,SpringCloud断路器的使用,服务API的检查.token的校验,feign消费者的使用.大致代码框架 ...

  8. python-6面向对象编程

    1-类和实例 class Student(object): def __init__(self, name, score):# _init__方法的第一个参数永远是self,表示创建的实例本身 sel ...

  9. 笔记-cookie参数

    笔记-cookie参数 cookie各个参数详解 定义和用法 setcookie()函数向客户端发送一个 HTTP cookie. cookie是由服务器发送到浏览器的变量.cookie 通常是服务器 ...

  10. 9,K-近邻算法(KNN)

    导引: 如何进行电影分类 众所周知,电影可以按照题材分类,然而题材本身是如何定义的?由谁来判定某部电影属于哪 个题材?也就是说同一题材的电影具有哪些公共特征?这些都是在进行电影分类时必须要考虑的问 题 ...