题目来源:http://poj.org/problem?id=1060

题目大意:

  考虑系数为0和1的多项式。两个多项式的加法可以通过把相应次数项的系数相加而实现。但此处我们用模2加法来计算系数之和。一个实例:

(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2

同样,多项式的减法我们在求系数之差时也用模2减法,例如:

(x^6 + x^4 + x^2 + x + 1) - (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2

多项式的乘法与平常的做法一致,但同次项系数相加时使用模二加法,例如:

(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1

两个多项式f(x)和g(x)模多项式h(x)是求f(x)*g(x)除以h(x)的余数。例如:

(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) modulo (x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1

多项式中最高次数称为degree。给出f(x) g(x)和h(x),写一个程序求出  f(x)*g(x) mod h(x)  的结果。假定f(x)和g(x)的degree都小于h(x),多项式的degree都小于1000。

由于系数都是0或1,假设多项式的degree为d,那么该多项式可以由一个次数指示整数(d + 1)和d+1个二进制位来表示。比如x^7 + x^6 + 1 可表示为: 8 1 1 0 0 0 0 0 1.

输入:由T个测试用例组成,并在输入的第一行给出T的值。每个用例由三行组成,分别为f(x),g(x),h(x)。多项式的表示方法如前所述。

输出:用如前所述的表示方式表达f(x)*g(x)%h(x)的值。每行对应一个输出的多项式。


Sample Input

2
7 1 0 1 0 1 1 1
8 1 0 0 0 0 0 1 1
9 1 0 0 0 1 1 0 1 1
10 1 1 0 1 0 0 1 0 0 1
12 1 1 0 1 0 0 1 1 0 0 1 0
15 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1

Sample Output

8 1 1 0 0 0 0 0 1
14 1 1 0 1 1 0 0 1 1 1 0 1 0 0

模拟题, 需要注意的两个地方:

1. 虽然题目中涉及的f(x) g(x) h(x)和输出的结果r(x)最高次都不会超过1000, 但中间结果f(x) * g(x)的最高次可能会超过1000,最大到2000.

2. 余数为0情况应输出0 0.

第一次用bitset.

 ////////////////////////////////////////////////////////////////
// POJ1060 Modular multiplication of polynomials
// Memory: 224K Time: 63MS
// Language: C++ Result : Accepted
/////////////////////////////////////////////////////////////// #include <iostream>
#include <bitset> using namespace std; bitset<> fx;
bitset<> gx;
bitset<> hx;
bitset<> rx;
int dfx, dgx, dhx, drx; int main(void) {
int T;
cin >> T;
for (int case_id = ; case_id < T; ++case_id) { fx.reset();
gx.reset();
hx.reset();
rx.reset(); //读取输入
cin >> dfx;
int buf;
for (int d = dfx - ; d >= ; --d) {
cin >> buf;
fx[d] = buf;
}
cin >> dgx;
for (int d = dgx - ; d >= ; --d) {
cin >> buf;
gx[d] = buf;
}
cin >> dhx;
for (int d = dhx - ; d >= ; --d) {
cin >> buf;
hx[d] = buf;
} //乘法计算
for (int d1 = dfx - ; d1 >= ; --d1) {
for (int d2 = dgx - ; d2 >= ; --d2) {
rx[d1 + d2] = fx[d1] & gx[d2] ^ rx[d1 + d2];
}
}
for (drx = ; drx >= ; --drx) {
if (rx[drx] == ) {
++drx;
break;
}
} //除法计算
while (drx >= dhx && drx > ) {
int t = drx - dhx;
for (int d = dhx - ; d >= ; --d) {
rx[d + t] = hx[d] ^ rx[d + t];
}
while (drx >= && rx[drx] == ) {
--drx;
}
++drx;
} //输出
cout << drx;
for (int d = drx - ; d > ; --d) {
cout << " " << rx[d];
}
cout << " " << rx[] << endl;
}
return ;
}

附测试数据:


input


output

POJ1060 Modular multiplication of polynomials的更多相关文章

  1. POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3 ...

  2. POJ 1060:Modular multiplication of polynomials

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4 ...

  3. POJ 1060 Modular multiplication of polynomials(多项式的加减乘除,除法转化成减法来求)

    题意:给出f(x),g(x),h(x)的 (最高次幂+1)的值,以及它们的各项系数,求f(x)*g(x)/h(x)的余数. 这里多项式的系数只有1或0,因为题目要求:这里多项式的加减法是将系数相加/减 ...

  4. UVALive 2323 Modular Multiplication of Polynomials(模拟)

    这是一个相对简单的模拟,因为运算规则已经告诉了我们,并且比较简单,不要被吓到…… 思路:多项式除以另外一个多项式,如果能除,那么他的最高次一定被降低了,如果最高次不能被降低,那说明已经无法被除,就是题 ...

  5. Lintcode: Hash Function && Summary: Modular Multiplication, Addition, Power && Summary: 长整形long

    In data structure Hash, hash function is used to convert a string(or any other type) into an integer ...

  6. POJ题目排序的Java程序

    POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...

  7. A过的题目

    1.TreeMap和TreeSet类:A - Language of FatMouse ZOJ1109B - For Fans of Statistics URAL 1613 C - Hardwood ...

  8. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  9. 【转】POJ百道水题列表

    以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...

随机推荐

  1. 11-09SQLserver 基础-数据库之汇总练习45题

    设有一数据库,包括四个表:学生表(Student).课程表(Course).成绩表(Score)以及教师信息表(Teacher).四个表的结构分别如表1-1的表(一)~表(四)所示,数据如表1-2的表 ...

  2. 【转载】eclipse如何传递main参数

    转自:http://blog.csdn.net/theblackbeard/article/details/52172048 在命令行窗口可以通过java +程序名 +参数1(空格)参数2(空格).. ...

  3. sys添加调用模块的路径;遍历可以调用模块的路径

    import sys sys.path.append("D:") for i in sys.path: print(i)

  4. dedecms出错此问题:Cannot_modify_header_information_-_headers_already_sent_by_(output_started_at

    修改php.ini文件,php.ini配置问题,解决办法:打开 php.ini 然后把 output_buffering 设为 on ,重启iis或apache即可. 出现以上问题可能是由于更换空间, ...

  5. 高性能MySQL笔记-第5章Indexing for High Performance-004怎样用索引才高效

    一.怎样用索引才高效 1.隔离索引列 MySQL generally can’t use indexes on columns unless the columns are isolated in t ...

  6. linux安装thrift

    安装配置Thrift Thrift的编译器使用C++编写的,在安装编译器之前,首先应该保证操作系统基本环境支持C++的编译,安装相关依赖的软件包,如下所示 sudo yum install autom ...

  7. R: 控制流: if & for & while

    ################################################### 问题:if 判断   18.4.29 if 的应用与??...... 解决方案: # if(){ ...

  8. loj10099 矿场搭建

    传送门 分析 我们发现可以将这张图转换为一个联通块来处理.我们求出所有的割点.在求完之后我们我们对于每一个点双连通分量如果它没有割点相连则需要布置两个出口,因为可能有一个出口正好被割掉.而如果有一个割 ...

  9. Jsp入门第二天

    1. JSP 指令: JSP指令(directive)是为JSP引擎而设计的. 它们并不直接产生任何可见输出, 而只是告诉引擎如何处理JSP页面中的其余部分. 2. 在目前的JSP 2.0中,定义了p ...

  10. hadoop学习记录--hdfs文件上传过程源码解析

    本节并不大算为大家讲接什么是hadoop,或者hadoop的基础知识因为这些知识在网上有很多详细的介绍,在这里想说的是关于hdfs的相关内容.或许大家都知道hdfs是hadoop底层存储模块,专门用于 ...