转载 http://www.cnblogs.com/skywang12345/p/3544116.html  https://blog.csdn.net/programmer_at/article/details/79799267

Executor执行Callable任务

  Callable 和 Future 是比较有趣的一对组合。当我们需要获取线程的执行结果时,就需要用到它们。Callable用于产生结果,Future用于获取结果。

1. Callable

Callable 是一个接口,它只包含一个call()方法。Callable是一个返回结果并且可能抛出异常的任务。为了便于理解,我们可以将Callable比作一个Runnable接口,而Callable的call()方法则类似于Runnable的run()方法。

Callable的源码如下:

public interface Callable<V> {
V call() throws Exception;
}

说明:从中我们可以看出Callable支持泛型。

2. Future

Future 是一个接口。它用于表示异步计算的结果。提供了检查计算是否完成的方法,以等待计算的完成,并获取计算的结果。

Future的源码如下:

public interface Future<V> {
// 试图取消对此任务的执行。
boolean cancel(boolean mayInterruptIfRunning) // 如果在任务正常完成前将其取消,则返回 true。
boolean isCancelled() // 如果任务已完成,则返回 true。
boolean isDone() // 如有必要,等待计算完成,然后获取其结果。
V get() throws InterruptedException, ExecutionException; // 如有必要,最多等待为使计算完成所给定的时间之后,获取其结果(如果结果可用)。
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}

说明: Future用于表示异步计算的结果。它的实现类是FutureTask,在讲解FutureTask之前,我们先看看Callable, Future, FutureTask它们之间的关系图,如下:

说明
(01) RunnableFuture是一个接口,它继承了Runnable和Future这两个接口。RunnableFuture的源码如下:

public interface RunnableFuture<V> extends Runnable, Future<V> {
void run();
}

(02) FutureTask实现了RunnableFuture接口。所以,我们也说它实现了Future接口。

示例和源码分析

我们先通过一个示例看看Callable和Future的基本用法,然后再分析示例的实现原理。

import java.util.concurrent.Callable;
import java.util.concurrent.Future;
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ExecutionException; class MyCallable implements Callable { @Override
public Integer call() throws Exception {
int sum = 0;
// 执行任务
for (int i=0; i<100; i++)
sum += i;
//return sum;
return Integer.valueOf(sum);
}
} public class CallableTest1 { public static void main(String[] args)
throws ExecutionException, InterruptedException{
//创建一个线程池
ExecutorService pool = Executors.newSingleThreadExecutor();
//创建有返回值的任务
Callable c1 = new MyCallable();
//执行任务并获取Future对象
Future f1 = pool.submit(c1);
// 输出结果
System.out.println(f1.get());
//关闭线程池
pool.shutdown();
}
}

运行结果

4950

结果说明
  在主线程main中,通过newSingleThreadExecutor()新建一个线程池。接着创建Callable对象c1,然后再通过pool.submit(c1)将c1提交到线程池中进行处理,并且将返回的结果保存到Future对象f1中。然后,我们通过f1.get()获取Callable中保存的结果;最后通过pool.shutdown()关闭线程池。

1. submit任务,等待线程池execute 
1. 执行FutureTask类的get方法时,会把主线程封装成WaitNode节点并保存在waiters链表中, 并阻塞等待运行结果; 
2. FutureTask任务执行完成后,通过UNSAFE设置waiters相应的waitNode为null,并通过LockSupport类unpark方法唤醒主线程;

在实际业务场景中,Future和Callable基本是成对出现的,Callable负责产生结果,Future负责获取结果。 
1. Callable接口类似于Runnable,只是Runnable没有返回值。 
2. Callable任务除了返回正常结果之外,如果发生异常,该异常也会被返回,即Future可以拿到异步执行任务各种结果; 
3. Future.get方法会导致主线程阻塞,直到Callable任务执行完成;

1. submit()

submit()在ExecutorService.java中的定义:

<T> Future<T> submit(Callable<T> task);

<T> Future<T> submit(Runnable task, T result);

Future<?> submit(Runnable task);

submit()在AbstractExecutorService.java中实现,AbstractExecutorService.submit()实现了ExecutorService.submit(),并且可以获取执行完的返回值, 而ThreadPoolExecutor是AbstractExecutorService.submit()的子类,所以submit方法也是ThreadPoolExecutor的方法,它的源码如下:

public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
// 创建一个RunnableFuture对象
RunnableFuture<T> ftask = newTaskFor(task);
// 执行“任务ftask”
execute(ftask);
// 返回“ftask”
return ftask;
}

说明:submit()通过newTaskFor(task)创建了RunnableFuture对象ftask。它的源码如下:

protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
}

通过submit方法提交的Callable任务会被封装成了一个FutureTask对象。通过Executor.execute方法提交FutureTask到线程池中等待被执行,最终执行的是FutureTask的run方法;

2. FutureTask的构造函数

FutureTask的内部状态及构造函数如下:

public class FutureTask<V> implements RunnableFuture<V> {

    private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6; public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
// callable是一个Callable对象
this.callable = callable;
// state记录FutureTask的状态
this.state = NEW; // ensure visibility of callable
}
}

3. FutureTask的run()方法

我们继续回到submit()的源码中。
在newTaskFor()新建一个ftask对象之后,会通过execute(ftask)执行该任务。此时ftask被当作一个Runnable对象进行执行,最终会调用到它的run()方法;ftask的run()方法在java/util/concurrent/FutureTask.java中实现,源码如下:

public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
// 将callable对象赋值给c。
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
// 执行Callable的call()方法,并保存结果到result中。
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
// 如果运行成功,则将result保存
if (ran)
set(result);
}
} finally {
runner = null;
// 设置“state状态标记”
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}

说明:FutureTask.run方法是在线程池中被执行的,而非主线程 
1. 通过执行Callable任务的call方法; 
2. 如果call执行成功,则通过set方法保存结果,之后调用FutureTask的get()方法,返回的就是通过set(result)保存的值; 
3. 如果call执行有异常,则通过setException保存异常;

4. get方法

public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}

内部通过awaitDone方法对主线程进行阻塞,具体实现如下:

private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
} int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}

说明:

  1. 如果主线程被中断,则抛出中断异常;
  2. 判断FutureTask当前的state,如果大于COMPLETING,说明任务已经执行完成,则直接返回;
  3. 如果当前state等于COMPLETING,说明任务已经执行完,这时主线程只需通过yield方法让出cpu资源,等待state变成NORMAL;
  4. 通过WaitNode类封装当前线程,并通过UNSAFE添加到waiters链表;
  5. 最终通过LockSupport的park或parkNanos挂起线程;

Java多线程系列 JUC线程池05 线程池原理解析(四)的更多相关文章

  1. Java多线程系列--“JUC原子类”05之 AtomicLongFieldUpdater原子类

    概要 AtomicIntegerFieldUpdater, AtomicLongFieldUpdater和AtomicReferenceFieldUpdater这3个修改类的成员的原子类型的原理和用法 ...

  2. Java多线程系列--“JUC线程池”05之 线程池原理(四)

    概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...

  3. Java多线程系列--“JUC线程池”06之 Callable和Future

    概要 本章介绍线程池中的Callable和Future.Callable 和 Future 简介示例和源码分析(基于JDK1.7.0_40) 转载请注明出处:http://www.cnblogs.co ...

  4. Java多线程系列--“JUC线程池”02之 线程池原理(一)

    概要 在上一章"Java多线程系列--“JUC线程池”01之 线程池架构"中,我们了解了线程池的架构.线程池的实现类是ThreadPoolExecutor类.本章,我们通过分析Th ...

  5. Java多线程系列--“JUC线程池”03之 线程池原理(二)

    概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...

  6. Java多线程系列--“JUC线程池”04之 线程池原理(三)

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509960.html 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基 ...

  7. Java多线程系列--“JUC锁”05之 非公平锁

    概要 前面两章分析了"公平锁的获取和释放机制",这一章开始对“非公平锁”的获取锁/释放锁的过程进行分析.内容包括:参考代码获取非公平锁(基于JDK1.7.0_40)释放非公平锁(基 ...

  8. Java多线程系列--“基础篇”07之 线程休眠

    概要 本章,会对Thread中sleep()方法进行介绍.涉及到的内容包括:1. sleep()介绍2. sleep()示例3. sleep() 与 wait()的比较 转载请注明出处:http:// ...

  9. Java多线程系列--“基础篇”10之 线程优先级和守护线程

    概要 本章,会对守护线程和线程优先级进行介绍.涉及到的内容包括:1. 线程优先级的介绍2. 线程优先级的示例3. 守护线程的示例 转载请注明出处:http://www.cnblogs.com/skyw ...

  10. Java多线程系列--“JUC集合”05之 ConcurrentSkipListMap

    概要 本章对Java.util.concurrent包中的ConcurrentSkipListMap类进行详细的介绍.内容包括:ConcurrentSkipListMap介绍ConcurrentSki ...

随机推荐

  1. 強大的Selector框架

    代码地址如下:http://www.demodashi.com/demo/12648.html 前言 在开发的过程中,我们经常会遇到给view设置背景,什么圆形背景啊,圆角背景啊,点击变色背景啊之类的 ...

  2. Dephi泛型generic的应用

    Dephi泛型generic的应用   泛型在C++, C#中已有广泛应用,Delphi自2009版本也引入泛型,典型的应用如TList,TDictionary.如果你熟悉C#,其用法十分类似. 比如 ...

  3. Android IntentService全然解析 当Service遇到Handler

    转载请标明出处: http://blog.csdn.net/lmj623565791/article/details/47143563: 本文出自:[张鸿洋的博客] 一 概述 大家都清楚.在Andro ...

  4. Dual Camera Info

    一个摄像头解决不了的问题,那就用两个:对于双摄你需要了解这些 http://www.chengshiluntan.com/wg/a/20160715/6ca0343f59789235c9419887f ...

  5. idea设置自定义快捷键

    在说明之前,先引入一个非常好的 Intellij Idea中文教程:intelliJ Idea中文教程 一创建模板类 二使用方法备注 在IntellijIdea中我并没有找到直接对某个方法进行注释的模 ...

  6. Pentaho 免费版本下载地址列表

    Pentaho CE(Community Edition) 免费版本下载地址列表 http://sourceforge.net/projects/pentaho/files/Pentaho 插件名称  ...

  7. java学习日历输出(一)

    import java.text.DateFormatSymbols; import java.util.Calendar; import java.util.GregorianCalendar; i ...

  8. Linux3_文件系统

    1.Linux发行版本之间的差别很少,差别主要表现在系统管理的特色工具以及软件包管理方式的不同.目录结构基本上都是一样的. Windows的文件结构是多个并列的树状结构,最顶部的是不同的磁盘(分区), ...

  9. iphone怎么检测屏幕是否被点亮 (用UIApplication的Delegate)

    本文转载至  http://gaohaijun.blog.163.com/blog/static/176698271201161524857373/     问题:那位能说一下怎么能检测到iphone ...

  10. linux下jdk多版本管理

    linux下jdk多版本管理 项目开发中,不管是哪种语言都避免不了多个版本环境管理问题(本文虽然以jdk为例来写的,但不仅限于jdk),如何能做到快速的环境升级与切换确实是一件深思的事! 安装jdk ...