hdu6053
hdu6053
题意
给出 \(A\) 数组,问有多少种 \(B\) 数组满足下面条件。
- \(1≤ B_i ≤ A_i\)
- For each pair \(( l , r ) \ (1≤l≤r≤n) , gcd(b_l,b_{l+1}...b_r) ≥ 2\) 。
分析
首先肯定要去枚举 \(gcd\) ,如果暴力去计算,对于每个 \(gcd\) ,我们都要乘 \(n\) 次,这样显然会超时。考虑一种将区间分块的思想,如果 \(gcd\) 为 \(10\) ,那么区间 \([20, 30)\) 里的数除以 \(10\) 都是 \(2\) ,当 \(gcd\) 越大时,区间越大。我们直接统计下前缀和,可以查询某个区间里包含的数的个数,快速幂计算答案。
最后求得的 \(dp[i]\) 表示 \(gcd=i\) 时,构成的 \(B\) 数组的个数,可以用容斥去处理得到最后的答案。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 10;
const int N = 1e5 + 5;
const ll MOD = 1e9 + 7;
int kase = 1;
int T;
ll POW(ll x, int n) {
ll res = 1;
while(n) {
if(n & 1) res = res * x % MOD;
x = x * x % MOD;
n >>= 1;
}
return res;
}
int sum[MAXN];
ll dp[MAXN];
int main() {
scanf("%d", &T);
while(T--) {
memset(sum, 0, sizeof sum);
memset(dp, 0, sizeof dp);
int n;
scanf("%d", &n);
int mn = N;
for(int i = 0; i < n; i++) {
int x;
scanf("%d", &x);
mn = min(mn, x);
sum[x]++;
}
for(int i = 1; i <= N; i++) {
sum[i] += sum[i - 1];
}
for(int i = 2; i <= mn; i++) {
ll c = 0;
dp[i] = 1;
for(int j = i; j <= N; j += i) {
c++;
int x;
if(j + i - 1 > N) x = sum[N] - sum[j - 1];
else x = sum[j + i - 1] - sum[j - 1];
if(x == 0) continue;
dp[i] = (dp[i] * POW(c, x)) % MOD;
}
}
for(int i = N; i >= 2; i--) {
for(int j = 2 * i; j <= N; j += i) {
dp[i] = (dp[i] - dp[j] + MOD) % MOD;
}
}
ll ans = 0;
for(int i = 0; i <= N; i++) {
ans = (ans + dp[i]) % MOD;
}
printf("Case #%d: %lld\n", kase++, ans);
}
return 0;
}
hdu6053的更多相关文章
- hdu6053 TrickGCD 容斥原理
/** 题目:hdu6053 TrickGCD 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:You are given an array ...
- HDU-6053 TrickGCD
题目连接: https://vjudge.net/problem/HDU-6053 Description You are given an array A , and Zhu wants to kn ...
- [Hdu-6053] TrickGCD[容斥,前缀和]
Online Judge:Hdu6053 Label:容斥,前缀和 题面: 题目描述 给你一个长度为\(N\)的序列A,现在让你构造一个长度同样为\(N\)的序列B,并满足如下条件,问有多少种方案数? ...
- hdu6053(莫比乌斯+容斥+分块)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意: 给出一个含 n 个元素的 a 数组, 求 bi <= ai 且 gcd(b1, ...
- Codeforces #428 Div2 D
#428 Div2 D 题意 给出一些数,现在要求找出一些数满足 \(i_1 < i_2 < i_3 < ... < i_k\) 以及 \(gcd(a_{i_1}, a_{i_ ...
- Codeforces 803F - Coprime Subsequences(数论)
原题链接:http://codeforces.com/contest/803/problem/F 题意:若gcd(a1, a2, a3,...,an)=1则认为这n个数是互质的.求集合a中,元素互质的 ...
随机推荐
- 记录下MoKee编译过程
纯属记录帖 关注和了解这个rom有段时间了. 最近有需要了解odex,折腾了几天还是在坑里. 索性,先编译下MoKee看看. 之前make过 4.2 和 5.1 ,刷到模拟器和N5里. 编译教程可以参 ...
- 22、(转载)jQueryMobile 知识点总结
本文转自:http://www.cnblogs.com/jxyedu HTML5技术生态介绍 H5的现状与未来 HTML5是用于取代1999年所制定的 HTML 4.01 和 XHTML 1.0 标准 ...
- JMeter学习笔记(十) 计数器
前面写了导出文件接口的测试,对于导出文件的文件名称,为了不重复(即不覆盖之前的文件),可以添加一个计数器来设置不同的index,另外也可以借助函数助手. 下面是我使用到的关于计数器的简单应用,其他的自 ...
- Leetcode 662.二叉树最大宽度
二叉树最大宽度 给定一个二叉树,编写一个函数来获取这个树的最大宽度.树的宽度是所有层中的最大宽度.这个二叉树与满二叉树(full binary tree)结构相同,但一些节点为空. 每一层的宽度被定义 ...
- 团队冲刺Alpha(七)
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...
- InnoDB 存储引擎的线程与内存池
InnoDB 存储引擎的线程与内存池 InnoDB体系结构如下: 后台线程: 1.后台线程的主要作用是负责刷新内存池中的数据,保证缓冲池中的内存缓存的是最近的数据: 2.另外,将以修改的数据文件刷 ...
- [bzoj] 2453 维护数列 || 单点修改分块
原题 询问区间有种个颜色,单点修改某个位置. 修改次数<=1000 维护pre[i]为前一个与当前位置颜色一样的位置. 询问时以pre为关键字sort,lower_bound找pre<x的 ...
- 03 Java 修饰符
Java 修饰符主要分为两类: 访问修饰符 非访问修饰符 访问修饰符 public,对所有类可见 protected,对同一包内的类和子类可见 default,同一个包内的类可见 private,对当 ...
- Struts2.0中ActionInvocation使用
Interceptor的接口定义没有什么特别的地方,除了init和destory方法以外,intercept方法是实现整个拦截器机制的核心方法.而它所依赖的参数ActionInvocation则是我们 ...
- NIO的介绍及使用(总结)
传统的socket IO中,需要为每个连接创建一个线程,当并发的连接数量非常巨大时,线程所占用的栈内存和CPU线程切换的开销将非常巨大.使用NIO,不再需要为每个线程创建单独的线程,可以用一个含有限数 ...