题目链接

Line belt

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2862    Accepted Submission(s): 1099

Problem Description
In a two-dimensional plane there are two line belts, there are two segments AB and CD, lxhgww's speed on AB is P and on CD is Q, he can move with the speed R on other area on the plane.
How long must he take to travel from A to D?
 
Input
The first line is the case number T.
For each case, there are three lines.
The first line, four integers, the coordinates of A and B: Ax Ay Bx By.
The second line , four integers, the coordinates of C and D:Cx Cy Dx Dy.
The third line, three integers, P Q R.
0<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10
 
Output
The minimum time to travel from A to D, round to two decimals.
 
Sample Input
1
0 0 0 100
100 0 100 100
2 2 1
 
Sample Output
136.60
 
Author
lxhgww&&momodi
 

题意:

给出两条传送带的起点到末端的坐标,其中ab为p的速度,cd为q的速度 其他地方为r的速度

求a到d点的最短时间。

分析:

首先要看出来这是一个凹型的函数,

时间最短的路径必定是至多3条直线段构成的,一条在AB上,一条在CD上,一条架在两条线段之间。

所有利用两次三分,第一个三分ab段的一点,第二个三分知道ab一点后的cd段的接点。

刚开始没用do while错了两次,因为如果给的很接近的话,上来的t1没有赋值。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define LL __int64
const int maxn = 1e2 + ;
const double eps = 1e-;
using namespace std;
double p, q, r;
struct node
{
double x, y;
}a, b, c, d; double dis(node a, node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} double solve2(node t)
{
double d1, d2;
node le = c;
node ri = d;
node mid, midmid;
do
{
mid.x = (le.x+ri.x)/2.0;
mid.y = (le.y+ri.y)/2.0;
midmid.x = (mid.x+ri.x)/2.0;
midmid.y = (mid.y+ri.y)/2.0;
d1 = dis(t, mid)/r + dis(mid, d)/q;
d2 = dis(t, midmid)/r + dis(midmid, d)/q;
if(d1 > d2)
le = mid;
else ri = midmid;
}while(dis(le, ri)>=eps);
return d1;
} double solve1()
{
double d1, d2;
node le = a;
node ri = b;
node mid, midmid;
do
{
mid.x = (le.x+ri.x)/2.0;
mid.y = (le.y+ri.y)/2.0;
midmid.x = (mid.x+ri.x)/2.0;
midmid.y = (mid.y+ri.y)/2.0;
d1 = dis(a, mid)/p + solve2(mid);
d2 = dis(a, midmid)/p + solve2(midmid);
if(d1 > d2)
le = mid;
else ri = midmid;
}while(dis(le, ri)>=eps);
return d1;
} int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%lf%lf%lf%lf", &a.x, &a.y, &b.x, &b.y);
scanf("%lf%lf%lf%lf", &c.x, &c.y, &d.x, &d.y);
scanf("%lf%lf%lf", &p, &q, &r);
printf("%.2lf\n", solve1());
}
return ;
}

HDU 3400 Line belt (三分嵌套)的更多相关文章

  1. HDU 3400 Line belt (三分再三分)

    HDU 3400 Line belt (三分再三分) ACM 题目地址:  pid=3400" target="_blank" style="color:rgb ...

  2. 三分套三分 --- HDU 3400 Line belt

    Line belt Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=3400 Mean: 给出两条平行的线段AB, CD,然后一 ...

  3. 搜索(三分):HDU 3400 Line belt

    Line belt Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. HDU 3400 Line belt (三分套三分)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=3400 题意: 有两条带子ab和cd,在ab上的速度为p,在cd上的速度为q,在其它地方的速度为r.现 ...

  5. HDU 3400 Line belt【三分套三分】

    从A出发到D,必定有从AB某个点E出发,从某个点F进入CD 故有E,F两个不确定的值. 在AB上行走的时间   f = AE / p 在其他区域行走的时间 g = EF / r 在CD上行走的时间   ...

  6. hdu 3400 Line belt 三分法

    思路:要求最短时间从A到D,则走的路线一定是AB上的一段,CD上的一段,AB与CD之间的一段. 那么可以先三分得到AB上的一个点,在由这个点三分CD!! 代码如下: #include<iostr ...

  7. hdu 3400 Line belt

    题意:给你两条线段AB,CD:然后给你在AB,CD上的速度P,Q,在其它部分的速度是R,然后求A到D的最短时间. 思路:用三分枚举从AB线段上离开的点,然后再用三分枚举在CD的上的点找到最优点,求距离 ...

  8. 【HDOJ】3400 Line belt

    三分. #include <cstdio> #include <cstring> #include <cmath> typedef struct { double ...

  9. Line belt

    Problem Description In a two-dimensional plane there are two line belts, there are two segments AB a ...

随机推荐

  1. 1.SVN

    1.SVN安装 SVN服务器端VisualSVN Server(64位OS必须装64位VisualSVN-Server,默认端口是443). 就像建立数据库一样,需要先在svn服务器VisualSVN ...

  2. Eclipse debug neutron-server

    1 首先停掉neutron-server kill neutron-server in screen by ctr-c q-svc 2 cp /usr/local/bin/neutron-server ...

  3. NET 平台下的WebService 简单使用

    一句话理解:提供可供外部访问的方法,实现跨平台访问 注意: 在客户端是添加“服务引用”,而不是引用 当服务端更新了服务之后,在客户端,一定也要“更新服务” 当要执行异常调用时,要在前台.aspx的头部 ...

  4. 代码题(1)—lower_bound和upper_bound算法

    1.lower_bound:查找序列中的第一个出现的值大于等于val的位置 这个序列中可能会有很多重复的元素,也可能所有的元素都相同,为了充分考虑这种边界条件,STL中的lower_bound算法总体 ...

  5. Visual C++中min()和max()函数的使用

    标准库在<algorithm>头中定义了两个模板函数std::min() 和 std::max().通常用它可以计算某个值对的最小值和最大值. 可惜在 Visual C++ 无法使用它们, ...

  6. python UDP CS demo

    UDP Communication Contents UDP Communication Sending Receiving Using UDP for e.g. File Transfers Mul ...

  7. codeforces 632A A. Grandma Laura and Apples(暴力)

    A. Grandma Laura and Apples time limit per test 1 second memory limit per test 256 megabytes input s ...

  8. java将白色背景图片转换成透明图片

    package evecom.image; import java.awt.Graphics2D; import java.awt.Image; import java.awt.image.Buffe ...

  9. centos 6.7 (UDEV,、etc/hosts)安装 RAC 11.2.0.4 报错处理

    环境说明: ​db 11.2.0.4        os: centos 6.7    UDEV管理ASM      没有配置DNS服务器,采用/etc/hosts​报错: ​1.    CVU(Cl ...

  10. a标签中href="javacript:;" href="javacript:void(0);" href="#"区别

    在使用<a>标签时,经常会绑定其他事件比如onclick,这时候我们会给<a>标签的href属性赋值为“#”,“javacript:;”,“javacript:void(0); ...