Deep Learning 学习随记(四)自学习和非监督特征学习
接着看讲义,接下来这章应该是Self-Taught Learning and Unsupervised Feature Learning。
含义:
从字面上不难理解其意思。这里的self-taught learning指的是用非监督的方法提取特征,然后用监督方法进行分类。比如用稀疏自编码+softmax regression。
对于非监督特征学习,有两种类型,一类是self-taught learning,一类是semi-supervised learning。看他们的定义不如看讲义中给出的那个简单的例子:
假定有一个计算机视觉方面的任务,目标是区分汽车和摩托车图像;也即训练样本里面要么是汽车的图像,要么是摩托车的图像。哪里获取大量的无类标数据呢?最简单的方式可能是到互联网上下载一些随机的图像数据集,这这些数据上训练出一个稀疏自编码神经网络,从中得到有用的特征。这个例子里,无类标数据完全来自于一个和带类标数据不同的分布(无类标数据集中,或许其中一些图像包含汽车或者摩托车,但是不是所有的图像都如此)。这种情形被称为自学习。
相反,如果有大量的无类标图像数据,要么是汽车图像,要么是摩托车图像,仅仅是缺失了类标(没有标注每张图片到底是汽车还是摩托车)。也可以用这些无类标数据来学习特征。这种方式,即要求无类标样本和带类标样本服从相同的分布,有时候被称为半监督学习。在实践中,常常无法找到满足这种要求的无类标数据(到哪里找到一个每张图像不是汽车就是摩托车,只是丢失了类标的图像数据库?)因此,自学习被广泛的应用于从无类标数据集中学习特征。
练习:
下面是讲义中的练习,要解决的还是MNIST手写库的识别问题,主要过程就是稀疏自编码提取特征然后用softmax regression分类。
一开始用一台32位的机器跑,出现内存不够的情况,后来换了台64位的机器才好。主要代码如下:
stlExercise.m:
%% CS294A/CS294W Self-taught Learning Exercise % Instructions
% ------------
%
% This file contains code that helps you get started on the
% self-taught learning. You will need to complete code in feedForwardAutoencoder.m
% You will also need to have implemented sparseAutoencoderCost.m and
% softmaxCost.m from previous exercises.
%
%% ======================================================================
% STEP 0: Here we provide the relevant parameters values that will
% allow your sparse autoencoder to get good filters; you do not need to
% change the parameters below. inputSize = 28 * 28;
numLabels = 5;
hiddenSize = 200;
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-3; % weight decay parameter
beta = 3; % weight of sparsity penalty term
maxIter = 400; %% ======================================================================
% STEP 1: Load data from the MNIST database
%
% This loads our training and test data from the MNIST database files.
% We have sorted the data for you in this so that you will not have to
% change it. % Load MNIST database files
mnistData = loadMNISTImages('mnist/train-images-idx3-ubyte');
mnistLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte'); % Set Unlabeled Set (All Images) % Simulate a Labeled and Unlabeled set
labeledSet = find(mnistLabels >= 0 & mnistLabels <= 4);
unlabeledSet = find(mnistLabels >= 5); numTrain = round(numel(labeledSet)/2);
trainSet = labeledSet(1:numTrain);
testSet = labeledSet(numTrain+1:end); unlabeledData = mnistData(:, unlabeledSet); trainData = mnistData(:, trainSet);
trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5 testData = mnistData(:, testSet);
testLabels = mnistLabels(testSet)' + 1; % Shift Labels to the Range 1-5 % Output Some Statistics
fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, 2));
fprintf('# examples in supervised training set: %d\n\n', size(trainData, 2));
fprintf('# examples in supervised testing set: %d\n\n', size(testData, 2)); %% ======================================================================
% STEP 2: Train the sparse autoencoder
% This trains the sparse autoencoder on the unlabeled training
% images. % Randomly initialize the parameters
theta = initializeParameters(hiddenSize, inputSize); %% ----------------- YOUR CODE HERE ----------------------
% Find opttheta by running the sparse autoencoder on
% unlabeledTrainingImages opttheta = theta;
% Use minFunc to minimize the function
addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% sparseAutoencoderCost.m satisfies this.
options.maxIter = 400; % Maximum number of iterations of L-BFGS to run
options.display = 'on'; [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
inputSize, hiddenSize, ...
lambda, sparsityParam, ...
beta, unlabeledData), ...
theta, options); %% ----------------------------------------------------- % Visualize weights
W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize);
display_network(W1'); %======================================================================
%% STEP 3: Extract Features from the Supervised Dataset
%
% You need to complete the code in feedForwardAutoencoder.m so that the
% following command will extract features from the data. trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
trainData); testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
testData); %======================================================================
%% STEP 4: Train the softmax classifier softmaxModel = struct;
%% ----------------- YOUR CODE HERE ----------------------
% Use softmaxTrain.m from the previous exercise to train a multi-class
% classifier. % Use lambda = 1e-4 for the weight regularization for softmax % You need to compute softmaxModel using softmaxTrain on trainFeatures and
% trainLabels
options.maxIter = 100;
softmax_lambda = 1e-4;
inputSize = 200; %features的维度与data的维度不一样了
softmaxModel = softmaxTrain(inputSize, numLabels, softmax_lambda, ...
trainFeatures, trainLabels, options); %% ----------------------------------------------------- %%======================================================================
%% STEP 5: Testing %% ----------------- YOUR CODE HERE ----------------------
% Compute Predictions on the test set (testFeatures) using softmaxPredict
% and softmaxModel
[pred] = softmaxPredict(softmaxModel, testFeatures);
acc = mean(testLabels(:) == pred(:));
fprintf('Accuracy: %0.3f%%\n', acc * 100); %% ----------------------------------------------------- % Classification Score
fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:))); % (note that we shift the labels by 1, so that digit 0 now corresponds to
% label 1)
%
% Accuracy is the proportion of correctly classified images
% The results for our implementation was:
%
% Accuracy: 98.3%
%
%
feedForwardAutoencoder.m:
function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data) % theta: trained weights from the autoencoder
% visibleSize: the number of input units (probably 64)
% hiddenSize: the number of hidden units (probably 25)
% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this
% follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder.
activation = W1*data+repmat(b1,[1,size(data,2)]);
activation = sigmoid(activation); %------------------------------------------------------------------- end %-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients. This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x)
sigm = 1 ./ (1 + exp(-x));
end
实验结果如下:

最终的正确率:

讲义和代码中提到正确率在98.3%,基本差不多。
Deep Learning 学习随记(四)自学习和非监督特征学习的更多相关文章
- UFLDL深度学习笔记 (三)无监督特征学习
UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较 ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- 转:无监督特征学习——Unsupervised feature learning and deep learning
http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...
- [转] 无监督特征学习——Unsupervised feature learning and deep learning
from:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio ...
- Deep learning:三十四(用NN实现数据的降维)
数据降维的重要性就不必说了,而用NN(神经网络)来对数据进行大量的降维是从2006开始的,这起源于2006年science上的一篇文章:reducing the dimensionality of d ...
- MVC4学习要点记四
一.使用原生SQL使用EF的一个优点就是自动帮我们生成SQL,这在常规情况下很方便,但有些情况下用EF却不适合.另外还有些特别复杂的语句,利用EF很难生成.所以,EF提供一组方法用来执行原生的SQL. ...
- Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- Deep Learning论文笔记之(三)单层非监督学习网络分析
Deep Learning论文笔记之(三)单层非监督学习网络分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感 ...
随机推荐
- So many interfaces!
http://stackoverflow.com/questions/4817369/why-does-does-it-really-listt-implement-all-these-interfa ...
- Chrome测试网站加载时间与流量消耗
加载10M内容,耗时近10秒钟 大概页面图片下载时,同时进行了,有的大图,下载要几秒钟
- ☀【组件 - 工具】Parallax 视差
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- 关于下拉刷新你是否真的非常理解还是只会搬砖?附 Android 实例子源代码文件下载地址380个合集
1,推荐几篇非常有用的博文 原创写的真的非常好 主要讲解原理,整体布局三部分组成以及设置padding等等作用, 下拉的具体实现 滑动到底部具体加载以及判断手势事件,再次推荐作者的 详细讲解 建议先看 ...
- SRM 410(1-250pt, 1-500pt)
DIV1 250pt 题意:对于图G,有一些点和边,点中有一些点称为特殊点.问在所有特殊点最终不能处于同一个联通块的条件下,最多能给在图G中添加多少条边. 解法:首先,对于图G,处理出它有哪些联通块, ...
- Very simple problem - SGU 111(大数开方)
分析:使用的是构造新数字法进行不断构造,然后逼近每一位数字,然后使用c++徒手敲了240多行代码,竟然过了........................很有成就感. 代码如下: ========== ...
- POI HSSFColor 颜色索引对照表
POI HSSFColor 颜色索引对照表 . HSSFColor.GREY_80_PERCENT . HSSFColor.INDIGO . HSSFColor.PLUM HSSFColor.BROW ...
- 保证相同类型的MDI子窗体只会被打开一次的方法
本文转载:http://www.cnblogs.com/Ricky81317/archive/2008/09/17/1292443.html 看到论坛中有朋友问,如何可以保证在MDI主窗体中,同一类型 ...
- 机房收费系统个人重构关于SQLHelper
近期在敲机房,对于SQLHelper也是心里有些怵,由于原来没用过,可是看了一些博客和资料后发现,假设不用这个类,会大大添加代码量,并且,事实上它并不新,它是一个有多个关于数据库增删改查操作的语句函数 ...
- Spring Data MongoDB example with Spring MVC 3.2
Spring Data MongoDB example with Spring MVC 3.2 Here is another example web application built with S ...