原题:
        W教授正在为国家航天中心计划一系列的太空飞行。每次太空飞行可进行一系列商业性实验而获取利润。现已确定了一个可供选择的实验集合 E={E1,E2,...,Em},和进行这些实验需要使用的全部仪器的集合 I={I1,I2,...,In}。实验 Ej 需要用到的仪器是 I 的子集 RjÍI。配置仪器 Ik 的费用为 ck 美元。实验 Ej 的赞助商已同意为该实验结果支付 pj 美元。W 教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大。这里净收益是指进行实验所获得的全部收入与配置仪器的全部费用的差额。
 
输入说明
文件第 1 行有 2 个正整数 m 和 n。 m 是实验数, n 是仪
器数。 接下来的 m 行,每行是一个实验的有关数据。 第一个数赞助商同意支付该实验的费
用;接着是该实验需要用到的若干仪器的编号。最后一行的 n 个数是配置每个仪器的费用。
 
input
2 3
10 1 2
25 2 3
5 6 7

output
1 2
1 2 3
17

 
 
【分析】
  就是一个裸的最大权闭合子图啦。
  但是输出方案让我很内伤。。。
  上一题是点数尽量少,这一题是尽量多。。。
  就是一些又不赚钱又不赔钱的也要算上。 
  但是跑最大流的话,会把他割掉,然后dfs方法就不行了,内伤、、、
  纠结了好久
  网上有人说那就枚举把。。。
 
  但是,我转念一想,不如猥琐一遍,,,然后我就放大边权,,,过了!!!!
 
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 110
#define INF 0xfffffff struct node
{
int x,y,f,o,next;
}t[Maxn*Maxn];int len;
int first[Maxn]; int mymin(int x,int y) {return x<y?x:y;} void ins(int x,int y,int f)
{
t[++len].x=x;t[len].y=y;t[len].f=f;
t[len].next=first[x];first[x]=len;t[len].o=len+;
t[++len].x=y;t[len].y=x;t[len].f=;
t[len].next=first[y];first[y]=len;t[len].o=len-;
} int c[Maxn]; int st,ed; queue<int > q;
int dis[Maxn];
bool bfs()
{
while(!q.empty()) q.pop();
memset(dis,-,sizeof(dis));
q.push(st);dis[st]=;
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==-)
{
dis[y]=dis[x]+;
q.push(y);
}
}
q.pop();
}
if(dis[ed]==-) return ;
return ;
} int ffind(int x,int flow)
{
if(x==ed) return flow;
int now=;
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==dis[x]+)
{
int a=ffind(y,mymin(flow-now,t[i].f));
t[i].f-=a;
t[t[i].o].f+=a;
now+=a;
}
if(now==flow) break;
}
if(now==) dis[x]=-;
return now;
} int max_flow()
{
int ans=;
while(bfs())
{
ans+=ffind(st,INF);
}
return ans;
} bool qq[Maxn]; void dfs(int x)
{
qq[x]=;
for(int i=first[x];i;i=t[i].next) if(!qq[t[i].y]&&t[i].f>)
{
dfs(t[i].y);
}
} int main()
{
int m,n,sum=;
scanf("%d%d",&m,&n);
len=;
memset(first,,sizeof(first));
for(int i=;i<=m;i++)
{
scanf("%d",&c[i]);
sum+=c[i];
while()
{
int x;
scanf("%d",&x);
if(x==-) break;
ins(i,x+m,INF);
}
}
st=n+m+;ed=st+;
for(int i=;i<=m;i++) ins(st,i,c[i]*+);
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
ins(i+m,ed,x*);
}
int x=max_flow();
memset(qq,,sizeof(qq));
dfs(st);
/*for(int i=1;i<=len;i+=2)
{
if(t[i].x==st&&t[i].f>0) qq[t[i].y]=1;
if(t[i].y==ed&&t[i].f==0)
qq[t[i].x]=1;
}*/
for(int i=;i<=m;i++) if(qq[i]) printf("%d ",i);printf("\n");
for(int i=m+;i<=m+n;i++) if(qq[i]) printf("%d ",i-m);printf("\n");
printf("%d\n",sum-x/);
return ;
}

那啥*10000就是方大边权。。。ORZ。。。

2016-11-04 09:42:22

【网络流24题】 No.2 太空飞行计划问题 (最大闭合权图 最大流 )的更多相关文章

  1. 网络流24题:P2762 太空飞行计划问题

    P2762 太空飞行计划问题 题目背景 题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,E ...

  2. LibreOJ #6001. 「网络流 24 题」太空飞行计划 最大权闭合图

    #6001. 「网络流 24 题」太空飞行计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测 ...

  3. Cogs 727. [网络流24题] 太空飞行计划(最大权闭合子图)

    [网络流24题] 太空飞行计划 ★★☆ 输入文件:shuttle.in 输出文件:shuttle.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] W 教授正在为国家航天中心计 ...

  4. 【网络流24题】最长k可重区间集问题(费用流)

    [网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...

  5. 【网络流24题】 No.10 餐巾计划问题 (线性规划网络优化 最小费用最大流)

    [题意] 一个餐厅在相继的 N 天里, 每天需用的餐巾数不尽相同. 假设第 i 天需要 ri 块餐巾(i=1,2,-, N). 餐厅可以购买新的餐巾,每块餐巾的费用为 p 分:或者把旧餐巾送到快洗部, ...

  6. 【网络流24题】 No.6 最长不减子序列问题 (最大流)[模型:最多不相交路径]

    [题意] 给定正整数序列x1 ,x2 , x3... ( 1)计算其最长不减子序列的长度 s.( 2)计算从给定的序列中最多可取出多少个长度为 s 的不减子序列.( 3) 如果允许在取出的序列中多次使 ...

  7. 【网络流24题】 No.15 汽车加油行驶问题 (分层图最短路i)

    [题意] 问题描述:给定一个 N*N 的方形网格,设其左上角为起点◎, 坐标为( 1, 1), X 轴向右为正, Y轴向下为正, 每个方格边长为 1, 如图所示. 一辆汽车从起点◎出发驶向右下角终点▲ ...

  8. 【PowerOJ1756&网络流24题】最长k可重区间集问题(费用流)

    题意: 思路: [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a><i.b>,建立 ...

  9. 网络流24题 一句话题解(updating)

      搭配飞行员问题   最简单的一道题 就是一个二分图匹配   太空飞行计划   最大权闭合子图 什么叫"最大权闭合子图"呢? 就是给定一个有向图,在里面选择一个点集,使得点集中的 ...

随机推荐

  1. shell记录

    查看linux服务器有哪些人曾经ssh登陆过,以及他们的登录信息 who查看当前正在ssh链接中的 last查看最近被链接过的 who last netstat      -nltp      -an ...

  2. 第九篇:web之前端之web上传文件的方式

    前端之web上传文件的方式   前端之web上传文件的方式 本节内容 web上传文件方式介绍 form上传文件 原生js实现ajax上传文件 jquery实现ajax上传文件 form+iframe构 ...

  3. 11.13 noip模拟试题

    题目名称 笔记 括号 城堡可执行文件名 note brackets castle输入文件名 note.in brackets.in castle.in输出文件名 note.in brackets.ou ...

  4. asp.net后台获取前台的样式和后台给前台设置样式

    //获取到textbox1 的top值 Response.Write(textbox1.Style["top"]); //设置textbox1的style textbox1.Sty ...

  5. 初次使用nodejs的问题

    使用npm install -g 'xxx' 之后仍然报 Cannot find module 'xxx' 错误,可以通过设置环境变量来解决: export NODE_PATH=/usr/local/ ...

  6. Web前端开发如何利用css样式来控制Html中的h1/h2/h3标签不换行

      H1/H2/H3/H4标题标签常常使用在一个网页中唯一标题.重要栏目.重要标题等情形下. H1在一个网页中最好只使用一次,如对一个网页唯一标题使用.H2.H3.H4标签则可以在一个网页中多次出现, ...

  7. rc4加密

    function RC4(Expression, Password: string): string; var RB : array[0..255] of Integer; X, Y, Z: long ...

  8. OC - 12.NSURLRequest与NSURLConnection

    ##NSURLRequest NSURLRequest封装了一次网络请求所需要的数据,主要封装了以下信息: 请求路径(URL) 请求方法(GET或POST) 请求头 请求体 超时参数 NSURLReq ...

  9. UItextField常用方法

    - (void)viewDidLoad {     [super viewDidLoad];     // Do any additional setup after loading the view ...

  10. java新手笔记4 数组

    1.数组 import java.util.Random; public class ArrayDemo1 { public static void main(String[] args) { int ...