http://www.lydsy.com/JudgeOnline/problem.php?id=2693

题解:

考虑把lcm转化成gcd
那答案就是

然后神奇的设:

就有:

一样可以枚举

的取值,这是O(√n)的;

然后求f(x,y);

大概证明了一下= =

线性筛之后也可以O(√n)求出f(x,y)
总复杂度O(n),常数略大。。

这题显然是卡O(n)过不了呗
那就还得优化


预处理这玩意


然后O(√n)就搞出来啦!



“积性函数的约数和也是积性函数”  ->好像比较显然?
所以g(D)是积性函数
线性筛裸上就好

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#define ll long long
const ll Mod=;
ll g[],p[],sum[];
bool mark[];
ll read(){
ll t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void init(){
g[]=sum[]=;
for (ll i=;i<;i++){
if (!mark[i]){
p[++p[]]=i;
g[i]=(ll)((i-i*i)%Mod+Mod)%Mod;
}
for (ll j=;j<=p[]&&p[j]*i<=;j++){
mark[i*p[j]]=;
if (i%p[j]==){
g[i*p[j]]=g[i]*(p[j])%Mod;
break;
}else
g[i*p[j]]=g[i]*g[p[j]]%Mod;
}
sum[i]=sum[i-]+g[i];
}
}
ll F(ll x,ll y){
return (((x*(x+)/2LL)%Mod)*((y*(y+)/2LL)%Mod))%Mod;
}
int main(){
init();int T=read();
while (T--){
ll n=read(),m=read();
if (n>m) std::swap(n,m);
ll j;ll ans=;
for (ll i=;i<=n;i=j+){
j=std::min(n/(n/i),m/(m/i));
ans+=((sum[j]-sum[i-]%Mod+Mod)%Mod)*F(n/i,m/i);
ans%=Mod;
}
printf("%lld\n",ans);
}
}

BZOJ 2693 jzptab的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  2. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  3. bzoj 2693: jzptab 线性筛积性函数

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discus ...

  4. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  5. BZOJ 2693: jzptab( 莫比乌斯反演 )

    速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...

  6. ●BZOJ 2693 jzptab

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...

  7. BZOJ 2693 jzptab ——莫比乌斯反演

    同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...

  8. 【刷题】BZOJ 2693 jzptab

    Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 Sa ...

  9. BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法

    Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...

随机推荐

  1. Ajax之 beforeSend和complete longind制作

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px Consolas; min-height: 18.0px } p.p2 { margin: 0 ...

  2. python_Opencv_使用Matplotlib模块

    使用Matplotlib模块 Matplotib 是python 的一个绘图库,里头有各种各样的绘图方法. 之后会陆续了解.先学习怎样用Matplotib 显示图像. 可以放大图像,保存图像. 安装M ...

  3. 最长回文子串(百度笔试题和hdu 3068)

    版权所有.所有权利保留. 欢迎转载,转载时请注明出处: http://blog.csdn.net/xiaofei_it/article/details/17123559 求一个字符串的最长回文子串.注 ...

  4. hdu 4499 Cannon(暴力)

    题目链接:hdu 4499 Cannon 题目大意:给出一个n*m的棋盘,上面已经存在了k个棋子,给出棋子的位置,然后求能够在这种棋盘上放多少个炮,要求后放置上去的炮相互之间不能攻击. 解题思路:枚举 ...

  5. monkeyrunner 详细介绍

    MonkeyRunner: monkeyrunner工具提供了一个API,使用此API写出的程序可以在Android代码之外控制Android设备和模拟器.通过monkeyrunner,您可以写出一个 ...

  6. PHP开发Android应用程序(转)

    第一部分是指在Android系统的手机上直接写PHP脚本代码并立即运行:第二部分则继续讲解如何把写好的PHP脚本代码打包成akp安装文件. 首先,在手机上安装两个apk包. 一个是SL4A(Scrip ...

  7. Cross-origin resource sharing--reference

    Cross-origin resource sharing (CORS) is a mechanism that allows many resources (e.g., fonts, JavaScr ...

  8. [转] boost::any的用法、优点和缺点以及源代码分析

    boost::any用法示例: #include <iostream> #include <list> #include <boost/any.hpp> typed ...

  9. SVN Git 设置忽略目录 大全

    eclipse中SVN设置 用svn控制版本,svn本身是不会识别哪些该传,哪些不该传,这就导致有些关于路径的东西(比如拓展jar的路径)也被上传了,而当别人下载后,那个路径对于这个人可能完全不存在, ...

  10. IIS 7.5 配置伪静态

    IIS 7.5 配置伪静态_win服务器_脚本之家 win7下IIS的安装和配置 图文教程详细出处参考:http://www.jb51.net/article/29787.htm http://blo ...