一、概述

1、说明

  每一款芯片的启动文件都值得去研究,因为它可是你的程序跑的最初一段路,不可以不知道。通过了解启动文件,我们可以体会到处理器的架构、指令集、中断向量安排等内容,是非常值得玩味的。

  STM32作为一款高端Cortex-M3系列单片机,有必要了解它的启动文件。打好基础,为以后优化程序,写出高质量的代码最准备。

  本文以一个实际测试代码--START_TEST为例进行阐述。

2、整体过程概括

  STM整个启动过程是指从上电开始,一直到运行到main函数之间的这段过程,步骤为(以使用微库为例):

①上电后硬件设置SP、PC

②设置系统时钟

③软件设置SP

④加载.data、.bss,并初始化栈区

⑤跳转到C文件的main函数

3、整个启动过程涉及的代码

  启动过程涉及的文件不仅包含startup_stm32f10x_hd.s,还涉及到了MDK自带的连接库文件entry.o、entry2.o、entry5.o、entry7.o等(从生成的map文件可以看出来)。

二、程序在Flash上的存储结构

  在真正讲解启动过程之前,先要讲解程序下载到Flash上的结构和程序运行时(执行到main函数)时的SRAM数据结构。程序在用户Flash上的结构如下图所示。下图是通过阅读hex文件和在MDK下调试综合提炼出来的。

MSP初始值        编译器生成,主堆栈的初始值

异常向量表        不多说

外部中断向量表      不多说

代码段          存放代码

初始化数据段       .data

未初始化数据段      .bss

加载数据段和初始化栈的参数

  加载数据段和初始化栈的参数分别有4个,这里只讲解加载数据段的参数,至于初始化栈的参数类似。

0x0800 033c  Flash上的数据段(初始化数据段和未初始化数据段)起始地址

0x2000 0000  加载到SRAM上的目的地址

0x0000 000c  数据段的总大小

0x0800 02f4  调用函数_scatterload_copy

  需要说明的是初始化栈的函数--0x0800 0304与加载数据段的函数不一样,为_scatterload_zeroinit,它的目的就是将栈空间清零。

三、数据在SRAM上的结构

  程序运行时(执行到main函数)时的SRAM数据结构

四、详细过程分析

  有了以上的基础,现在详细分析启动过程。

1、上电后硬件设置SP、PC

  刚上电复位后,硬件会自动根据向量表偏移地址找到向量表,向量表偏移地址的定义如下:

  调试现象如下:

  看看我们的向量表内容(通过J-Flash打开hex文件)

  硬件这时自动从0x0800 0000位置处读取数据赋给栈指针SP,然后自动从0x0800 0004位置处读取数据赋给PC,完成复位,结果为:

SP = 0x0200 0810

PC = 0x0800 0145

 2、设置系统时钟

  上一步中令PC=0x0800 0145的地址没有对齐,硬件自动对齐到0x0800 0144,执行SystemInit函数初始化系统时钟。

3、软件设置SP

  LDR   R0,=__main
  BX   R0

  执行上两条之类,跳转到__main程序段运行,注意不是main函数,___main的地址是0x0800 0130。

  可以看到指令LDR.W sp,[pc,#12],结果SP=0x2000 0810。

4、加载.data、.bss,并初始化栈区

 BL.W     __scatterload_rt2 

  进入 __scatterload_rt2代码段。

__scatterload_rt2:
0x08000168 4C06 LDR r4,[pc,#] ; @0x08000184
0x0800016A 4D07 LDR r5,[pc,#] ; @0x08000188
0x0800016C E006 B 0x0800017C
0x0800016E 68E0 LDR r0,[r4,#0x0C]
0x08000170 F0400301 ORR r3,r0,#0x01
0x08000174 E8940007 LDM r4,{r0-r2}
0x08000178 BLX r3
0x0800017A ADDS r4,r4,#0x10
0x0800017C 42AC CMP r4,r5
0x0800017E D3F6 BCC 0x0800016E
0x08000180 F7FFFFDA BL.W _main_init (0x08000138)

  这段代码是个循环(BCC 0x0800016e),实际运行时候循环了两次。第一次运行的时候,读取“加载数据段的函数(_scatterload_copy)”的地址并跳转到该函数处运行(注意加载已初始化数据段和未初始化数据段用的是同一个函数);第二次运行的时候,读取“初始化栈的函数(_scatterload_zeroinit)”的地址并跳转到该函数处运行。 相应的代码如下:

0x0800016E 68E0      LDR      r0,[r4,#0x0C]
0x08000170 F0400301 ORR r3,r0,#0x01
0x08000174
0x08000178 4798 BLX r3
  
  当然执行这两个函数的时候,还需要传入参数。至于参数,我们在“加载数据段和初始化栈的参数”环节已经阐述过了。当这两个函数都执行完后,结果就是“数据在SRAM上的结构”所展示的图。最后,也把事实加载和初始化的两个函数代码奉上如下:
                 __scatterload_copy:
0x080002F4 E002 B 0x080002FC
0x080002F6 C808 LDM r0!,{r3}
0x080002F8 1F12 SUBS r2,r2,#
0x080002FA C108 STM r1!,{r3}
0x080002FC 2A00 CMP r2,#0x00
0x080002FE D1FA BNE 0x080002F6
0x08000300 BX lr
__scatterload_null:
0x08000302 BX lr
__scatterload_zeroinit:
0x08000304 MOVS r0,#0x00
0x08000306 E001 B 0x0800030C
0x08000308 C101 STM r1!,{r0}
0x0800030A 1F12 SUBS r2,r2,#
0x0800030C 2A00 CMP r2,#0x00
0x0800030E D1FB BNE 0x08000308
0x08000310 BX lr

5、跳转到C文件的main函数

                 _main_init:
0x08000138 LDR r0,[pc,#] ; @0x0800013C
0x0800013A BX r0

五、异常向量与中断向量表

; Vector Table Mapped to Address  at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size __Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD ; Reserved
DCD ; Reserved
DCD ; Reserved
DCD ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler ; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_IRQHandler ; Tamper
DCD RTC_IRQHandler ; RTC
DCD FLASH_IRQHandler ; Flash
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line
DCD EXTI1_IRQHandler ; EXTI Line
DCD EXTI2_IRQHandler ; EXTI Line
DCD EXTI3_IRQHandler ; EXTI Line
DCD EXTI4_IRQHandler ; EXTI Line
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel
DCD ADC1_2_IRQHandler ; ADC1 & ADC2
DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX
DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0
DCD CAN1_RX1_IRQHandler ; CAN1 RX1
DCD CAN1_SCE_IRQHandler ; CAN1 SCE
DCD EXTI9_5_IRQHandler ; EXTI Line ..
DCD TIM1_BRK_IRQHandler ; TIM1 Break
DCD TIM1_UP_IRQHandler ; TIM1 Update
DCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and Commutation
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line ..
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
DCD TIM8_BRK_IRQHandler ; TIM8 Break
DCD TIM8_UP_IRQHandler ; TIM8 Update
DCD TIM8_TRG_COM_IRQHandler ; TIM8 Trigger and Commutation
DCD TIM8_CC_IRQHandler ; TIM8 Capture Compare
DCD ADC3_IRQHandler ; ADC3
DCD FSMC_IRQHandler ; FSMC
DCD SDIO_IRQHandler ; SDIO
DCD TIM5_IRQHandler ; TIM5
DCD SPI3_IRQHandler ; SPI3
DCD UART4_IRQHandler ; UART4
DCD UART5_IRQHandler ; UART5
DCD TIM6_IRQHandler ; TIM6
DCD TIM7_IRQHandler ; TIM7
DCD DMA2_Channel1_IRQHandler ; DMA2 Channel1
DCD DMA2_Channel2_IRQHandler ; DMA2 Channel2
DCD DMA2_Channel3_IRQHandler ; DMA2 Channel3
DCD DMA2_Channel4_5_IRQHandler ; DMA2 Channel4 & Channel5
__Vectors_End

  这段代码就是定义异常向量表,在之前有一个“J-Flash打开hex文件”的图片跟这个表格是一一对应的。编译器根据我们定义的函数 Reset_Handler、NMI_Handler等,在连接程序阶段将这个向量表填入这些函数的地址。

startup_stm32f10x_hd.s内容:

NMI_Handler     PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP stm32f10x_it.c中内容:
void NMI_Handler(void)
{
}

  在启动汇编文件中已经定义了函数NMI_Handler,但是使用了“弱”,它允许我们再重新定义一个NMI_Handler函数,程序在编译的时候会将汇编文件中的弱函数“覆盖掉”--两个函数的代码在连接后都存在,只是在中断向量表中的地址填入的是我们重新定义函数的地址。

六、使用微库与不使用微库的区别

  使用微库就意味着我们不想使用MDK提供的库函数,而想用自己定义的库函数,比如说printf函数。那么这一点是怎样实现的呢?我们以printf函数为例进行说明。

1、不使用微库而使用系统库

  在连接程序时,肯定会把系统中包含printf函数的库拿来调用参与连接,即代码段有系统库的参与。

  在启动过程中,不使用微库而使用系统库在初始化栈的时候,还需要初始化堆(猜测系统库需要用到堆),而使用微库则是不需要的。

                 IF      :DEF:__MICROLIB

                 EXPORT  __initial_sp
EXPORT __heap_base
EXPORT __heap_limit ELSE IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap __user_initial_stackheap LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR ALIGN ENDIF

  另外,在执行__main函数的过程中,不仅需要完成“使用微库”情况下的所有工作,额外的工作还需要进行库的初始化,才能使用系统库(这一部分我还没有深入探讨)。附上__main函数的内容:

                  __main:
0x08000130 F000F802 BL.W __scatterload_rt2_thumb_only (0x08000138)
0x08000134 F000F83C BL.W __rt_entry_sh (0x080001B0)
__scatterload_rt2_thumb_only:
0x08000138 A00A ADR r0,{pc}+ ; @0x08000164
0x0800013A E8900C00 LDM r0,{r10-r11}
0x0800013E ADD r10,r10,r0
0x08000140 ADD r11,r11,r0
0x08000142 F1AA0701 SUB r7,r10,#0x01
__scatterload_null:
0x08000146 45DA CMP r10,r11
0x08000148 D101 BNE 0x0800014E
0x0800014A F000F831 BL.W __rt_entry_sh (0x080001B0)
0x0800014E F2AF0E09 ADR.W lr,{pc}-0x07 ; @0x08000147
0x08000152 E8BA000F LDM r10!,{r0-r3}
0x08000156 F0130F01 TST r3,#0x01
0x0800015A BF18 IT NE
0x0800015C 1AFB SUBNE r3,r7,r3
0x0800015E F0430301 ORR r3,r3,#0x01
0x08000162 BX r3
0x08000164 LSLS r0,r3,#
0x08000166 MOVS r0,r0
0x08000168 02B8 LSLS r0,r7,#
0x0800016A MOVS r0,r0
__scatterload_copy:
0x0800016C 3A10 SUBS r2,r2,#0x10
0x0800016E BF24 ITT CS
0x08000170 C878 LDMCS r0!,{r3-r6}
0x08000172 C178 STMCS r1!,{r3-r6}
0x08000174 D8FA BHI __scatterload_copy (0x0800016C)
0x08000176 LSLS r2,r2,#
0x08000178 BF24 ITT CS
0x0800017A C830 LDMCS r0!,{r4-r5}
0x0800017C C130 STMCS r1!,{r4-r5}
0x0800017E BF44 ITT MI
0x08000180 LDRMI r4,[r0,#0x00]
0x08000182 600C STRMI r4,[r1,#0x00]
0x08000184 BX lr
0x08000186 MOVS r0,r0
__scatterload_zeroinit:
0x08000188 MOVS r3,#0x00
0x0800018A MOVS r4,#0x00
0x0800018C MOVS r5,#0x00
0x0800018E MOVS r6,#0x00
0x08000190 3A10 SUBS r2,r2,#0x10
0x08000192 BF28 IT CS
0x08000194 C178 STMCS r1!,{r3-r6}
0x08000196 D8FB BHI 0x08000190
0x08000198 LSLS r2,r2,#
0x0800019A BF28 IT CS
0x0800019C C130 STMCS r1!,{r4-r5}
0x0800019E BF48 IT MI
0x080001A0 600B STRMI r3,[r1,#0x00]
0x080001A2 BX lr
__rt_lib_init:
0x080001A4 B51F PUSH {r0-r4,lr}
0x080001A6 F3AF8000 NOP.W
__rt_lib_init_user_alloc_1:
0x080001AA BD1F POP {r0-r4,pc}
__rt_lib_shutdown:
0x080001AC B510 PUSH {r4,lr}
__rt_lib_shutdown_user_alloc_1:
0x080001AE BD10 POP {r4,pc}
__rt_entry_sh:
0x080001B0 F000F82F BL.W __user_setup_stackheap (0x08000212)
0x080001B4 MOV r1,r2
__rt_entry_postsh_1:
0x080001B6 F7FFFFF5 BL.W __rt_lib_init (0x080001A4)
__rt_entry_postli_1:
0x080001BA F000F919 BL.W main (0x080003F0)

2、使用微库而不使用系统库

  在程序连接时,不会把包含printf函数的库连接到终极目标文件中,而使用我们定义的库。

  启动时需要完成的工作就是之前论述的步骤1、2、3、4、5,相比使用系统库,启动过程步骤更少。

附测试代码:START_TEST.zip 

STM32启动过程--启动文件--分析的更多相关文章

  1. Android系统进程Zygote启动过程的源代码分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6768304 在Android系统中,所有的应用 ...

  2. Android应用程序进程启动过程的源代码分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址: http://blog.csdn.net/luoshengyang/article/details/6747696 Android 应用程序框架层创 ...

  3. 跟踪分析Linux内核的启动过程--实验报告 分析 及知识重点

    跟踪分析Linux内核的启动过程 攥写人:杨光  学号:20135233 ( *原创作品转载请注明出处*) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.stud ...

  4. U-Boot 启动过程和源码分析(第二阶段)-main_loop分析

    1> main_loop  common/main.c /******************************************************************** ...

  5. 20135202闫佳歆--week3 跟踪分析Linux内核的启动过程--实验及总结

    实验三:跟踪分析Linux内核的启动过程 一.调试步骤如下: 使用gdb跟踪调试内核 qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd r ...

  6. 实验三:跟踪分析Linux内核的启动过程

    实验三:跟踪分析Linux内核的启动过程 学号:20135114 姓名:王朝宪 注: 原创作品转载请注明出处   <Linux内核分析>MOOC课程http://mooc.study.16 ...

  7. 20135239 益西拉姆 linux内核分析 跟踪分析Linux内核的启动过程

    回顾 1.中断上下文的切换——保存现场&恢复现场 本节主要课程内容 Linux内核源代码简介 1.打开内核源代码页面 arch/目录:支持不同CPU的源代码:其中的X86是重点 init/目录 ...

  8. AMS分析 -- 启动过程

    一. AMS简介 AmS可以说是Android上层系统最核心的模块之一,其主要完成管理应用进程的生命周期以及进程的Activity,Service,Broadcast和Provider等. 从系统运行 ...

  9. 【凯子哥带你学Framework】Activity启动过程全解析

    It’s right time to learn Android’s Framework ! 前言 学习目标 写作方式 主要对象功能介绍 主要流程介绍 zygote是什么有什么作用 SystemSer ...

随机推荐

  1. 【课程分享】基于Lucene4.6+Solr4.6+Heritrix1.14+S2SH实战开发从无到有垂直搜索引擎

    对这个课程有兴趣的朋友,能够加我的QQ2059055336和我联系,能够和您分享.  课程介绍:最有前途的软件开发技术--搜索引擎技术  搜索引擎作为互联网发展中至关重要的一种应用,已经成为互联网各个 ...

  2. 回击MLAA:NVIDIA FXAA抗锯齿性能实測、画质对照

    PC游戏玩家肯定会对各式各样的AA抗锯齿技术很熟悉,而今天本文的主角就是NVIDIA今年才推出的新型抗锯齿技术"FXAA". FXAA在某种程度上有些类似于AMD之前宣传的MLAA ...

  3. [Erlang]怎样加入自己的BIF

    步骤 1. 执行configure 2. 将你的bifs加入至erts/emulator/beam/bif.tab bif re:grep/2 bif re:compile/1 3. 创建一个C代码文 ...

  4. careercup-排序和查找 11.2

    11.2 编写一个方法,对字符串数组进行排序,将所有变位词1排在相邻的位置. 类似leetcode:Anagrams 解法: 变位词:由变换某个词或短语的字母顺序构成的新的词或短语.例如,“trian ...

  5. [转] JAVA正则表达式:Pattern类与Matcher类详解(转)

    java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包.它包括两个类:Pattern和 Matcher Pattern 一个Pattern是一个正则表达式经编译后的 ...

  6. Java中创建线程的两种方式

    创建线程的第一种方式: 创建一个类继承Thread 重写Thread中的run方法 (创建线程是为了执行任务 任务代码必须有存储位置,run方法就是任务代码的存储位置.) 创建子类对象,其实就是在创建 ...

  7. Learning Django Resources

    Learning Django Django makes it easier to build better Web apps more quickly and with less code. Web ...

  8. linux下安装apache2.4

    linux安装Apache2步骤如下 apr 下载地址 http://mirrors.cnnic.cn/apache//apr/apr-1.5.2.tar.gz 安装过程 tar -xzvf apr- ...

  9. PHP计算2点经纬度之间的距离

    hp] view plaincopy function getDistanceBetweenPointsNew($latitude1, $longitude1, $latitude2, $longit ...

  10. 4柱汉诺塔(zz)

    多柱汉诺塔可以用Frame–Stewart算法来解决. The Frame–Stewart algorithm, giving a presumably optimal solution for fo ...