Filebeat日志收集简单使用
1.简略介绍
2.本文实现的功能
3.事先必备:
4.配置Log4j,自定义代码中日志信息输出格式以及文件名称
<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="info" schema="Log4J-V2.0.xsd" monitorInterval="600">
<Properties>
//存放日志的文件夹名称
<Property name="LOG_HOME">logs</Property>
//日志文件名称
<property name="FILE_NAME">collector</property>
//日志格式
//[%d{yyyy-MM-dd'T'HH:mm:ss.SSSZZ}] 日志输入时间,东八区
//[%level{length=5}] 日志级别,debug、info、warn、error
//[%thread-%tid] 当前线程信息
//[%logger] 当前日志信息所属类全路径
//[%X{hostName}] 当前节点主机名。需要通过MDC来自定义。
//[%X{ip}] 当前节点ip。需要通过MDC来自定义。
//[%X{applicationName}] 当前应用程序名。需要通过MDC来自定义。
//[%F,%L,%C,%M] %F:当前日志信息所属的文件(类)名,%L:日志信息在所属文件中的行号,%C:当前日志所属文件的全类名,%M:当前日志所属的方法名
//[%m] 日志详情
//%ex 异常信息
//%n 换行
<property name="patternLayout">[%d{yyyy-MM-dd'T'HH:mm:ss.SSSZZ}] [%level{length=5}] [%thread-%tid] [%logger]
[%X{hostName}] [%X{ip}] [%X{applicationName}] [%F,%L,%C,%M] [%m] ## '%ex'%n
</property>
</Properties>
<Appenders>
//日志输出至控制台
<Console name="CONSOLE" target="SYSTEM_OUT">
<PatternLayout pattern="${patternLayout}"/>
</Console>
//全量日志信息
<RollingRandomAccessFile name="appAppender" fileName="${LOG_HOME}/app-${FILE_NAME}.log"
filePattern="${LOG_HOME}/app-${FILE_NAME}-%d{yyyy-MM-dd}-%i.log">
<PatternLayout pattern="${patternLayout}"/>
<Policies>
<TimeBasedTriggeringPolicy interval="1"/>
<SizeBasedTriggeringPolicy size="500MB"/>
</Policies>
<DefaultRolloverStrategy max="20"/>
</RollingRandomAccessFile>
//日志级别是warn以上的日志信息
<RollingRandomAccessFile name="errorAppender" fileName="${LOG_HOME}/error-${FILE_NAME}.log"
filePattern="${LOG_HOME}/error-${FILE_NAME}-%d{yyyy-MM-dd}-%i.log">
<PatternLayout pattern="${patternLayout}"/>
<Filters>
<ThresholdFilter level="warn" onMatch="ACCEPT" onMismatch="DENY"/>
</Filters>
<Policies>
<TimeBasedTriggeringPolicy interval="1"/>
<SizeBasedTriggeringPolicy size="500MB"/>
</Policies>
<DefaultRolloverStrategy max="20"/>
</RollingRandomAccessFile>
</Appenders>
<Loggers>
<!-- 业务相关 异步logger -->
<AsyncLogger name="com.sakura.*" level="info" includeLocation="true">
<AppenderRef ref="appAppender"/>
</AsyncLogger>
<AsyncLogger name="com.sakura.*" level="info" includeLocation="true">
<AppenderRef ref="errorAppender"/>
</AsyncLogger>
<Root level="info">
<Appender-Ref ref="CONSOLE"/>
<Appender-Ref ref="appAppender"/>
<AppenderRef ref="errorAppender"/>
</Root>
</Loggers>
</Configuration>
5.Filebeat安装
#上传Filebeat至任意目录下
cd /usr/local/software
tar -zxvf filebeat-6.6.0-linux-x86_64.tar.gz -C /usr/local/
cd /usr/local
mv filebeat-6.6.0-linux-x86_64/ filebeat-6.6.0
## 配置filebeat
vim /usr/local/filebeat-5.6.2/filebeat.yml
##可参考下方配置信息
启动:
## 检查配置是否正确
cd /usr/local/filebeat-6.6.0
./filebeat -c filebeat.yml -configtest
## Config OK
## 启动filebeat
/usr/local/filebeat-6.6.0/filebeat &
#查看是否启动成功
ps -ef | grep filebeat
###################### Filebeat Configuration Example #########################
filebeat.prospectors: - input_type: log paths:
## app-服务名称.log, 为什么写死,防止发生轮转抓取历史数据
- /usr/local/logs/app-collector.log #日志文件地址
#定义写入 ES 时的 _type 值
document_type: "app-log"
multiline:
#pattern: '^\s*(\d{4}|\d{2})\-(\d{2}|[a-zA-Z]{3})\-(\d{2}|\d{4})' # 指定匹配的表达式(匹配以 2017-11-15 08:04:23:889 时间格式开头的字符串)
pattern: '^\[' # 指定匹配的表达式(匹配以 "{ 开头的字符串)。具体以哪种形式进行匹配要根据实际的日志格式来配置。
negate: true # 是否必须匹配到
match: after # 以[开头的多行数据,从第二行开始合并到上一行的末尾
max_lines: 2000 # 最大的行数,多余的不再合并到上一行末尾
timeout: 2s # 如果在规定时间没有新的日志事件就不等待后面的日志,提交数据
fields:
logbiz: collector
logtopic: app-log-collector ## 按服务划分用作kafka topic
evn: dev - input_type: log paths:
- /usr/local/logs/error-collector.log
document_type: "error-log"
multiline:
#pattern: '^\s*(\d{4}|\d{2})\-(\d{2}|[a-zA-Z]{3})\-(\d{2}|\d{4})' # 指定匹配的表达式(匹配以 2017-11-15 08:04:23:889 时间格式开头的字符串)
pattern: '^\[' # 指定匹配的表达式(匹配以 "{ 开头的字符串)
negate: true # 是否匹配到
match: after # 合并到上一行的末尾
max_lines: 2000 # 最大的行数
timeout: 2s # 如果在规定时间没有新的日志事件就不等待后面的日志
fields:
logbiz: collector
logtopic: error-log-collector ## 按服务划分用作kafka topic
evn: dev output.kafka:
enabled: true
hosts: ["192.168.204.139:9092"]
topic: '%{[fields.logtopic]}'
partition.hash:
reachable_only: true
compression: gzip
max_message_bytes: 1000000
required_acks: 1
logging.to_files: true
6.在kafka上创建对应的topic
略
7.启动kafka、代码程序,最后启动Filebeat。
8.使用Logstash消费Kafka中的数据
A.安装Logstash
Logstash安装及基础命令:https://www.cnblogs.com/monument/p/12950290.html
B.配置Logstash启动脚本
input {
kafka {
## app-log-服务名称
topics_pattern => "app-log-.*"
bootstrap_servers => "192.168.11.51:9092"
codec => json
consumer_threads => ## 因为只设置了一个partition,所以消费者线程数设置为1
decorate_events => true
#auto_offset_rest => "latest"
group_id => "app-log-group"
}
kafka {
## error-log-服务名称
topics_pattern => "error-log-.*"
bootstrap_servers => "192.168.11.51:9092"
codec => json
consumer_threads =>
decorate_events => true
#auto_offset_rest => "latest"
group_id => "error-log-group"
}
}
filter {
## 时区转换
ruby {
code => "event.set('index_time',event.timestamp.time.localtime.strftime('%Y.%m.%d'))"
}
if "app-log" in [fields][logtopic]{
grok {
## 表达式
match => ["message", "\[%{NOTSPACE:currentDateTime}\] \[%{NOTSPACE:level}\] \[%{NOTSPACE:thread-id}\] \[%{NOTSPACE:class}\] \[%{DATA:hostName}\] \[%{DATA:ip}\] \[%{DATA:applicationName}\] \[%{DATA:location}\] \[%{DATA:messageInfo}\] ## (\'\'|%{QUOTEDSTRING:throwable})"]
}
}
if "error-log" in [fields][logtopic]{
grok {
## 表达式
match => ["message", "\[%{NOTSPACE:currentDateTime}\] \[%{NOTSPACE:level}\] \[%{NOTSPACE:thread-id}\] \[%{NOTSPACE:class}\] \[%{DATA:hostName}\] \[%{DATA:ip}\] \[%{DATA:applicationName}\] \[%{DATA:location}\] \[%{DATA:messageInfo}\] ## (\'\'|%{QUOTEDSTRING:throwable})"]
}
}
}
## 测试输出到控制台:
output {
stdout { codec => rubydebug }
}
## elasticsearch,未实现:
output {
if "app-log" in [fields][logtopic]{
## es插件
elasticsearch {
# es服务地址
hosts => ["192.168.11.35:9200"]
# 用户名密码
user => "elastic"
password => ""
## 索引名,+ 号开头的,就会自动认为后面是时间格式:
## javalog-app-service-2019.01.
index => "app-log-%{[fields][logbiz]}-%{index_time}"
# 是否嗅探集群ip:一般设置true;http://192.168.11.35:9200/_nodes/http?pretty
# 通过嗅探机制进行es集群负载均衡发日志消息
sniffing => true
# logstash默认自带一个mapping模板,进行模板覆盖
template_overwrite => true
}
}
if "error-log" in [fields][logtopic]{
elasticsearch {
hosts => ["192.168.11.35:9200"]
user => "elastic"
password => ""
index => "error-log-%{[fields][logbiz]}-%{index_time}"
sniffing => true
template_overwrite => true
}
}
}
C.启动Logstash
9.将Logstash消费的数据推送到ElasticSearch
Filebeat日志收集简单使用的更多相关文章
- 【linux】【ELK】搭建Elasticsearch+Logstash+Kibana+Filebeat日志收集系统
前言 ELK是Elasticsearch.Logstash.Kibana的简称,这三者是核心套件,但并非全部. Elasticsearch是实时全文搜索和分析引擎,提供搜集.分析.存储数据三大功能:是 ...
- Filebeat 日志收集
Filebeat 介绍 Filebeat 安装 # 上传代码包 [root@redis03 ~]# rz filebeat-6.6.0-x86_64.rpm # 安装 [root@redis03 ~] ...
- Filebeat 日志收集器 安装和配置
Filebeat的配置文件是/etc/filebeat/filebeat.yml,遵循YAML语法.具体可以配置如下几个项目: Filebeat Output Shipper Logging(可选) ...
- ELK Stack 介绍 & Logstash 日志收集
ELK Stack 组成 Software Description Function E:Elasticsearch Java 程序 存储,查询日志 L:Logstash Java 程序 收集.过滤日 ...
- CentOS7下 简单安装和配置Elasticsearch Kibana Filebeat 快速搭建集群日志收集平台
目录 1.添加elasticsearch官网的yum源 2.Elasticsearch 安装elasticsearch 配置elasticsearch 启动elasticsearch并设为开机启动 3 ...
- 快速搭建应用服务日志收集系统(Filebeat + ElasticSearch + kibana)
快速搭建应用服务日志收集系统(Filebeat + ElasticSearch + kibana) 概要说明 需求场景,系统环境是CentOS,多个应用部署在多台服务器上,平时查看应用日志及排查问题十 ...
- 日志收集之filebeat使用介绍
此系列文章一共分为三部分,分为filebeat部分,logstash部分,es部分.这里会按照每天几百亿条的数据量来考虑,去设计.部署.优化这个日志系统,来最大限度的利用资源,并达到一个最优的性能.本 ...
- Elasticsearch + Logstash + Kibana +Redis +Filebeat 单机版日志收集环境搭建
1.前置工作 1.虚拟机环境简介 Linux版本:Linux localhost.localdomain 3.10.0-862.el7.x86_64 #1 SMP Fri Apr 20 16:44:2 ...
- asp.Net Core免费开源分布式异常日志收集框架Exceptionless安装配置以及简单使用图文教程
最近在学习张善友老师的NanoFabric 框架的时了解到Exceptionless : https://exceptionless.com/ !因此学习了一下这个开源框架!下面对Exceptionl ...
随机推荐
- CRC循环冗余校验码
原文转载自:https://blog.csdn.net/hm108106/article/details/73332465 1.CRC CRC循环冗余校验码是数据通信中的一种查错校验码. 循环冗余检查 ...
- 在执行 pip install 时遇到错误:python setup.py egg_info ...
最近重新安装win10 64位专业版, 正好遇到python3.8发布,试了一下.结果jupyter都安装不了...心碎. ERROR: Command errored out with exit s ...
- css文字不透明度怎么设置?
在css中有很多好看的样式都可以实现,css设置出来的样式让整个网页看起来也会非常美观,今天的这篇文章就给大家来介绍一下在css中怎么设置文字的透明度,让你的文字在网页中看起来是透明的. CSS设置透 ...
- SpringBoot2.x入门教程:理解配置文件
前提 这篇文章是<SpringBoot2.x入门>专辑的第4篇文章,使用的SpringBoot版本为2.3.1.RELEASE,JDK版本为1.8. 主要介绍SpringBoot配置文件一 ...
- MySQL索引 索引分类 最左前缀原则 覆盖索引 索引下推 联合索引顺序
MySQL索引 索引分类 最左前缀原则 覆盖索引 索引下推 联合索引顺序 What's Index ? 索引就是帮助RDBMS高效获取数据的数据结构. 索引可以让我们避免一行一行进行全表扫描.它的 ...
- Java基础笔记05-06-07-08
五.今日内容介绍 1.方法基础知识 2.方法高级内容 3.方法案例 01方法的概述 * A: 为什么要有方法 * 提高代码的复用性 * B: 什么是方法 * 完成特定功能的代码块. 02方法的定义格式 ...
- Java基础笔记01-02-03-04
一.今日内容介绍 1.Java开发环境搭建 2.HelloWorld案例 3.注释.关键字.标识符 4.数据(数据类型.常量) 01java语言概述 * A: java语言概述 * a: Java是s ...
- Python之迭代器、装饰器、软件开发规范
本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 孩子,我现在有个需 ...
- Python读取文件基本方法
在日常开发过程中,经常遇到需要读取配置文件,这边就涉及到一个文本读取的方法. 这篇文章主要以Python读取文本的基础方法为本,添加读取整篇文本返回字符串,读取键值对返回字典,以及读取各个项返回列表的 ...
- db2数据库创建删除主键约束和创建删除唯一键约束
创建.删除唯一约束: db2 "alter table tabname add unique(colname)" db2 "alter table tabname dro ...