Abstract

紧耦合lidar inertial里程计, 用smoothing和mapping.

1. Introduction

紧耦合lidar-inertial里程计.

  • 紧耦合的lidar inertial里程计框架

2. Related work

一般都是用ICP或者是GICP.

在LOAM[1], IMU被引入来de-skew lidar scan, 然后给移动一个先验做scan-匹配.

在[15], 预积分IMU测量被用来 de-skew 点云.

一个robocentric lidar-inertial 状态估计器, R-LINS[16] , 用error-state KF.


LIOM只能 0.6 倍实时

3. LiDAR Inertial Odometry via SAM

A. System Overview

状态是:

\[\mathbf{x}=\left[\mathbf{R}^{\mathbf{T}}, \mathbf{p}^{\mathbf{T}}, \mathbf{v}^{\mathbf{T}}, \mathbf{b}^{\mathbf{T}}\right]^{\mathbf{T}}
\]

B. IMU Preintegration Factor

角速度, 加速度的测量:

\[\begin{array}{l}
\hat{\boldsymbol{\omega}}_{t}=\boldsymbol{\omega}_{t}+\mathbf{b}_{t}^{\boldsymbol{\omega}}+\mathbf{n}_{t}^{\boldsymbol{\omega}} \\
\hat{\mathbf{a}}_{t}=\mathbf{R}_{t}^{\mathbf{B W}}\left(\mathbf{a}_{t}-\mathbf{g}\right)+\mathbf{b}_{t}^{\mathbf{a}}+\mathbf{n}_{t}^{\mathbf{a}},
\end{array}
\]

这里 \(\hat{\omega}_t\) 和 \(\hat{a}_t\) 是 raw 测量在 \(B\) 系.

速度, 位置和旋转在 \(t+\Delta t\)时刻如下:

\[\begin{aligned}
\mathbf{v}_{t+\Delta t}=\mathbf{v}_{t}+\mathbf{g} \Delta t+\mathbf{R}_{t}\left(\hat{\mathbf{a}}_{t}-\mathbf{b}_{t}^{\mathbf{a}}-\mathbf{n}_{t}^{\mathbf{a}}\right) \Delta t \\
\mathbf{p}_{t+\Delta t}=\mathbf{p}_{t}+\mathbf{v}_{t} \Delta t+\frac{1}{2} \mathbf{g} \Delta t^{2} \\
&+\frac{1}{2} \mathbf{R}_{t}\left(\hat{\mathbf{a}}_{t}-\mathbf{b}_{t}^{\mathbf{a}}-\mathbf{n}_{t}^{\mathbf{a}}\right) \Delta t^{2} \\
\mathbf{R}_{t+\Delta t}=\mathbf{R}_{t} \exp \left(\left(\hat{\boldsymbol{\omega}}_{t}-\mathbf{b}_{t}^{\omega}-\mathbf{n}_{t}^{\omega}\right) \Delta t\right)
\end{aligned}
\]

这里 \(R_t = R_t^{WB} = R_t^{{BW}^T}\). 这里我们假设 角速度 和 加速度 的\(B\) 保持不变.

C. LiDAR Odometry Factor

当一个新的scan到达时, 我们先做特征提取. Edge / planar 特征被提取来估计局部点的roughness. 有大的 roughness值的实被分类为edge, 值小的就是planar特征.

1. Sub-keyframes for voxel map

2. Scan-matching

3. Relative transform

edge点和平面点对应如下:

\[\begin{array}{r}
\mathbf{d}_{e_{k}}=\frac{\left|\left(\mathbf{p}_{i+1, k}^{e}-\mathbf{p}_{i, u}^{e}\right) \times\left(\mathbf{p}_{i+1, k}^{e}-\mathbf{p}_{i, v}^{e}\right)\right|}{\left|\mathbf{p}_{i, u}^{e}-\mathbf{p}_{i, v}^{e}\right|} \\
\mathbf{d}_{p_{k}}=\frac{\left(\mathbf{p}_{i, u}^{p}-\mathbf{p}_{i, v}^{p}\right) \times\left(\mathbf{p}_{i, u}^{p}-\mathbf{p}_{i, w}^{p}\right) \mid}{\left|\left(\mathbf{p}_{i, u}^{p}-\mathbf{p}_{i, v}^{p}\right) \times\left(\mathbf{p}_{i, u}^{p}-\mathbf{p}_{i, w}^{p}\right)\right|}
\end{array}
\]

D. GPS Factor

当收到GPS测量的时候, 我会先转换到局部笛卡尔坐标系.

一般我们只有在估计的位置协方差大于接受的GPS位置协方差的时候才加入 GPS factor.

E. Loop Closure Factor

...

4. Experiments

我们比较了LIO-SAM, LOAM和LIOM. LIO-SAM和LOAM是专注在实时的输出, 而LIOM是有无限的时间处理的.

A. Rotation Dataset

遇到的最大的旋转速度是 133.7°/s.

B. Walking Dataset

LIOM只跑了0.56x的实时.

C. Campus Dataset

D. Park Dataset

...

E. Amsterdam Dataset

....

F. Benchmarking Results

...

5. Conclusions and Discussion

没啥.

论文阅读LR LIO-SAM的更多相关文章

  1. 论文阅读 | FoveaBox: Beyond Anchor-based Object Detector

    论文阅读——FoveaBox: Beyond Anchor-based Object Detector 概述 这是一篇ArXiv 2019的文章,作者提出了一种新的anchor-free的目标检测框架 ...

  2. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  3. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  4. BITED数学建模七日谈之三:怎样进行论文阅读

    前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...

  5. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  6. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  7. Deep Reinforcement Learning for Dialogue Generation 论文阅读

    本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...

  8. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  9. 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)

    今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...

随机推荐

  1. C语言入门最后一阶,掌握这门知识,你就进入提高阶段~

    哈喽,伙伴们,我们前面讲了C语言的发展史,基本数据类型,变量与常量,表达式,基本结构等等,今天是作为C语言基础入门的最后一个阶段:输入与输出. 以上这些知识你能够掌握好,就可以开始进入C语言的进阶提高 ...

  2. Django 的JsonResponse 与json

    json

  3. Spring Cloud 学习 (二) Ribbon

    负载均衡是指将负载分摊到多个执行单元上,常见的负载均衡有两种方式:一种是独立进程单元,通过负载均衡策略,将请求转发到不同的执行单元上,例如 Ngnix:另一种是将负载均衡逻辑以代码的形式封装到服务消费 ...

  4. 一条 SQL 语句在 MySQL 中如何执行的

    一 MySQL 基础架构分析 1.1 MySQL 基本架构概览 下图是 MySQL 的一个简要架构图,从下图你可以很清晰的看到用户的 SQL 语句在 MySQL 内部是如何执行的. 先简单介绍一下下图 ...

  5. Scrum 冲刺 第二篇

    Scrum 冲刺 第二篇 每日会议照片 昨天已完成工作 队员 昨日完成任务 黄梓浩 初步完成app项目架构搭建 黄清山 完成部分个人界面模块数据库的接口 邓富荣 完成部分后台首页模块数据库的接口 钟俊 ...

  6. css改变svg的颜色

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. GYM101889J Jumping frog

    突然发现题刷累了写写题解还是满舒服的 题目大意: 给你一个只包含 \(R\) , \(P\) ,长度为 \(n\) 的字符串( \(3\le n\le 10^5\) ).你可以选择一个跳跃距离 \(l ...

  8. 微信端video去除最顶层播放

    https://x5.tencent.com/tbs/guide/video.html 给video标签添加属性 x5-video-player-type="h5"

  9. STL——容器(deque) deque 的大小

    1. deque 的大小 deque.size();              //返回容器中元素的个数 1 #include <iostream> 2 #include <dequ ...

  10. 跨站点脚本编制 - SpringBoot配置XSS过滤器(基于Jsoup)

    1. 跨站点脚本编制   风险:可能会窃取或操纵客户会话和 cookie,它们可能用于模仿合法用户,从而使黑客能够以该用户身份查看或变更用户记录以及执行事务.   原因:未对用户输入正确执行危险字符清 ...