An Introduction to Differential Privacy
原文链接:An Introduction to Differential Privacy
差分隐私算法可以允许分析人员执行良性的聚合分析,同时保证个人隐私得到切实的保护。、
- 背景
数据分析中的隐私保护技术已有数十年的历史,差分隐私算法是这一领域的最新技术。两个早期概念直接影响了差分隐私:
①最小查询集大小
②Dalenius的统计披露定义 - 最小查询集大小
旨在确保聚合查询的安全性,最小查询集大小是一种约束,只在确保聚合查询不会泄露有关个人的信息,给定某个配置的阈值量T,其确保每个聚合查询在至少有T个记录的数据集上进行,最小查询集大小会阻止针对少于T个记录的聚合查询。然而跟踪者攻击并不能被最小查询集大小所阻止,由于这些攻击最小查询集大小被认为不足以保护查询系统,所以,需要更好的、有保证的手段以确保隐私。 - Dalenius的统计披露定义
1997年Tore Dalenius提出一个严格的数据隐私定义:攻击者在使用敏感数据集之前,对他们不认识的人应该一无所知。(虽然这种保证失败了,但它对理解为什么差分隐私被构造成现在的样子是很重要的) - 差分隐私:
差分隐私差分隐私保证:攻击者能获取的个人数据几乎和他们从没有这个人记录的数据集中能获取的相差无几。这一保证足够强大,因为它符合显示世界——个人没有动机不参与数据集,因为不论自己在不在数据集中,该数据集的分析者都将得出关于该个人的相同的结论。由于其敏感的个人信息与系统的输出几乎完全不相关,因此用户可以确信处理其数据的组织不会侵犯他们的隐私。分析者几乎“无法获得个人信息”意味着他们被限制在关于任何个人的看法的微小变化中(“变化”是指使用数据集和使用相同的数据集减去任何一个人的记录之间的变化)。这种变化的范围由一个参数ε控制,对任何可能的结果,该参数设置了变化的边界。正式定义:算法A是-差分隐私的 当且仅当 Pr[A(D) = x] ≤ e^ϵ * Pr[A(D') = x],缺少任何一条记录的D被称为D',比如缺少某个人的数据,符号e指的是数字常数注:上述定义只对随机算法有意义,给出确定性输出的算法都不适合差分隐私。差分隐私保证的主要吸引力在于其对分析者所能获取的个人信息量的限制,此外,它具有以下有用的属性: - 可组合性:如果用保证程度分别为ε1和ε2的差分隐私来回应两个查询,则该对查询的差分隐私性等同于保证程度(ε1+ε2)。回想一下,较高的ε值意味着较弱的保证。
- 针对任意背景信息的强度:这种保证不以任何方式依赖于攻击者知道的背景信息。该属性是差分隐私强于早期的隐私保证(k-anonymity)的主要原因之一。
- 后期处理的安全性:对于差分隐私的结果,没有限制可以做什么——无论它与什么结合或者怎么被转换,它仍然是差分隐私的。
差分隐私算法是在算法内的关键点处添加噪声的随机算法。最简单的算法之一是拉普拉斯机制,该机制可以后期处理聚合查询的结果以使得它们差分私有。此外,存在着一些从根本上不同的算法,它们已经被证明可以保证差分隐私。几个值得探索的是私人乘法权重算法,乘法权重指数机制和DualQuery。
An Introduction to Differential Privacy的更多相关文章
- Deep Learning with Differential Privacy
原文链接:Deep Learning with Differential Privacy abstract:新的机器学习算法,差分隐私框架下隐私成本的改良分析,使用非凸目标训练深度神经网络. 数学中最 ...
- Introduction to Differential Equations,Michael E.Taylor,Page 3,4 注记
此文是对 [Introduction to Differential Equations,Michael E.Taylor] 第3页的一个注记.在该页中,作者给了微分方程$$\frac{dx}{dt} ...
- Certified Robustness to Adversarial Examples with Differential Privacy
目录 概 主要内容 Differential Privacy insensitivity Lemma1 Proposition1 如何令网络为-DP in practice Lecuyer M, At ...
- 差分隐私(Differential Privacy)定义及其理解
1 前置知识 本部分只对相关概念做服务于差分隐私介绍的简单介绍,并非细致全面的介绍. 1.1 随机化算法 随机化算法指,对于特定输入,该算法的输出不是固定值,而是服从某一分布. 单纯形(simplex ...
- 论文总结(Frequent Itemsets Mining With Differential Privacy Over Large-Scale Data)
一.论文目标:将差分隐私和频繁项集挖掘结合,主要针对大规模数据. 二.论文的整体思路: 1)预处理阶段: 对于大的数据集,进行采样得到采样数据集并计算频繁项集,估计样本数据集最大长度限制,然后再缩小源 ...
- Introduction to Differential Equations,Exercise 1.1,1.5,1.6,1.8,1.9,1.10
As noted,if $z=x+iy$,$x,y\in\mathbf{R}$,then $|z|=\sqrt{x^2+y^2}$ is equivalent to $|z|^2=z\overline ...
- Note: Differentially Private Access Patterns for Searchable Symmetric Encryption
The Core Issues and Ideas of This Paper Problem Baseline Searchable Symmetric Encryption (SSE) could ...
- Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记
The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...
- Functional mechanism: regression analysis under differential privacy_阅读报告
Functional mechanism: regression analysis under differential privacy 论文学习报告 组员:裴建新 赖妍菱 周子玉 2020 ...
随机推荐
- JavaScript 手写setTimeout
let setTimeout = (sec, num) => { // 初始当前时间 const now = new Date().getTime() let flag = true let c ...
- SpringBoot整合Spring Security
好好学习,天天向上 本文已收录至我的Github仓库DayDayUP:github.com/RobodLee/DayDayUP,欢迎Star,更多文章请前往:目录导航 前言 Spring Securi ...
- for语句——猜数字
#define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<string.h> #include<stdlib. ...
- 使用halo搭建自己的博客并配置https域名访问
首先进行java配置 # 1. 下载jdk [下载地址](https://www.oracle.com/cn/java/technologies/javase-downloads.html) - 一定 ...
- NodeJs+Express+SqlServer简易后台API服务搭建
首先安装nodejs 第一步 创建node项目配置package.json如下 express 使用方法可参考http://www.runoob.com/nodejs/nodejs-express-f ...
- Kubernetes实战总结 - 自定义Prometheus
一.概述 首先Prometheus整体监控结构略微复杂,一个个部署并不简单.另外监控Kubernetes就需要访问内部数据,必定需要进行认证.鉴权.准入控制, 那么这一整套下来将变得难上加难,而且还需 ...
- 【译】New experimental Razor editor for Visual Studio
随着 Visual Studio 2019 16.7 Preview 4 的发布,现在可以尝试我们新的实验性 Razor 编辑器,用于本地开发,包括 MVC.Razor Page 和 Blazor.我 ...
- 笔记:Linux用户管理(补充)、权限管理、内存管理、网络管理、渗透常用命令
一.用户管理(补充) 添加用户:useradd [选项] 用户名 useradd -u 5000 -g demogroup -G root -d /home/demo -s /bin/bash dem ...
- 7. oracle表的管理*
一.表名和列名的命名规则: 1.必须以字母开头 2.长度不能超过30个字符 3.不能使用oracle的保留字 4.只能使用如下字符 A-Z,a-z,0-9,$,#等 二.Oracle数据类型1.字符类 ...
- K8s 1.18.6版本基于 ingress-nginx 实现金丝雀发布(灰度发布)
K8s 1.18.6版本基于 ingress-nginx 实现金丝雀发布(灰度发布) 环境 软件 版本 kubernetes v1.18.6 nginx-ingress-controller 0.32 ...