原题链接

题意简介

要求有多少种 n 的排列,能够通过二分法正确地找到放在 pos 处的数字 x。

答案对 1e9+7 取模。n<=1000。

采用的二分法如下图:

思路分析

首先,这个排列中有一个位置是固定的,就是 a[pos] = x 。

我们知道,二分查找的过程是不断缩小区间的过程,想要找到一个已经确定放在 pos 位置上的 x ,需要判断的 mid 的位置,需要的大于 x 的数的个数 c1 和小于 x 的数的个数 c0 也是固定的。

也就是说,我们只需要模拟这个二分过程,求解出 c0 和 c1,然后利用排列组合的公式去计算就行了。

\(Ans = A^{c0}_{x-1} \times A^{c1}_{n-x} \times (n-1-c0-c1)!\)

由于本题的 n 的范围较小,可以不写逆元,直接暴力求阶乘。

顺带一提,本题有一个坑点在于不一定有解。显然的,当小于 x 的数不够 c0 个或大于 x 的数不够 c1 个时无解。

代码库

#include <cstdio>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,a,b) for(int i=a;i>=b;i--)
typedef long long ll;
const int MOD=1e9+7,N=1002;
inline ll _pow(ll x,ll p){
ll ans=1;
while(p){
if(p&1) ans=ans*x%MOD;
p>>=1; x=x*x%MOD;
}
return ans;
}
int n,x,pos,c0,c1;
ll fact[N];
int main(){
scanf("%d%d%d",&n,&x,&pos);
int l=0,r=n,mid;
while(l<r){
mid=(l+r)>>1;
if(mid<pos) c0++,l=mid+1;
else if(mid==pos) l=mid+1;
else c1++,r=mid;
}
fact[0]=1;
rep(i,1,n) fact[i]=(fact[i-1]*i)%MOD;
if(x-1-c0<0||n-x-c1<0||n-1-c0-c1<0) printf("0\n");
else printf("%lld\n",fact[x-1]*_pow(fact[x-1-c0],MOD-2)%MOD*fact[n-x]%MOD*_pow(fact[n-x-c1],MOD-2)%MOD*fact[n-1-c0-c1]%MOD);
return 0;
}

END

【CF1436C】Binary Search 题解的更多相关文章

  1. LeetCode编程训练 - 折半查找(Binary Search)

    Binary Search基础 应用于已排序的数据查找其中特定值,是折半查找最常的应用场景.相比线性查找(Linear Search),其时间复杂度减少到O(lgn).算法基本框架如下: //704. ...

  2. 算法与数据结构基础 - 折半查找(Binary Search)

    Binary Search基础 应用于已排序的数据查找其中特定值,是折半查找最常的应用场景.相比线性查找(Linear Search),其时间复杂度减少到O(lgn).算法基本框架如下: //704. ...

  3. [LeetCode]题解(python):098 Validate Binary Search Tree

    题目来源 https://leetcode.com/problems/validate-binary-search-tree/ Given a binary tree, determine if it ...

  4. 【题解】【BST】【Leetcode】Unique Binary Search Trees

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  5. 【题解】【BST】【Leetcode】Validate Binary Search Tree

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

  6. LintCode题解之Search Range in Binary Search Tree

    1.题目描述 2.问题分析 首先将二叉查找树使用中序遍历的方式将元素放入一个vector,然后在vector 中截取符合条件的数字. 3.代码 /** * Definition of TreeNode ...

  7. [LeetCode 题解]: Validate Binary Search Tree

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

  8. LeetCode96_Unique Binary Search Trees(求1到n这些节点能够组成多少种不同的二叉查找树) Java题解

    题目: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For e ...

  9. LeetCode Verify Preorder Sequence in Binary Search Tree

    原题链接在这里:https://leetcode.com/problems/verify-preorder-sequence-in-binary-search-tree/ 题目: Given an a ...

随机推荐

  1. python类,魔术方法等学习&&部分ssti常见操作知识点复习加深

    python类学习&&部分ssti常见操作知识点复习加深 在做ssti的模块注入的时候经常觉得自己python基础的薄弱,来学习一下,其实还是要多练习多背. 在python中所有类默认 ...

  2. CCNP:重发布及实验

    重发布(又:重分布.重分发):一台设备同时运行于两个协议或两个进程,默认从两端学习到的路由条目不共享:重发布技术就是人为的进行共享. 一  满足: 1.必须存在ASBR --- 自治系统边界路由器-- ...

  3. Spark 模型选择和调参

    Spark - ML Tuning 官方文档:https://spark.apache.org/docs/2.2.0/ml-tuning.html 这一章节主要讲述如何通过使用MLlib的工具来调试模 ...

  4. npm包的发布和管理

    npm包管理 npm其实是Node.js的包管理工具(node package manager). 为啥我们需要一个包管理工具呢?因为我们在Node.js上开发时,会用到很多别人写的JavaScrip ...

  5. NoActionBar主题下如何添加OptionsMenu

    菜单无法显示 为了不显示标题栏,所以主题使用了 NoActionBar,这也直接导致选项菜单无处显示 解决方案 添加一个ToolBar,自定义标题栏 <androidx.appcompat.wi ...

  6. Java知识系统回顾整理01基础05控制流程05 continue

    continue:继续下一次循环 一.continue 题目: 如果是双数,后面的代码不执行,直接进行下一次循环 要求效果: 答案: public class HelloWorld { public ...

  7. VS2015建立一个完整的c++工程:头文件.h 源文件.cpp,自动生成类

    https://blog.csdn.net/weixin_40539125/article/details/81430801 打开VS2015 ,新建VS win32工程,前面步骤很简单,不再阐述 下 ...

  8. for循环迭代可迭代对象

    模仿for循环迭代可迭代对象,# for i in Iterable:# iterable >>> 迭代器.iterator# 可迭代对象 iterable# 迭代器.iterato ...

  9. 跟着动画学习 TCP 三次握手和四次挥手

    TCP三次握手和四次挥手的问题在面试中是最为常见的考点之一.很多读者都知道三次和四次,但是如果问深入一点,他们往往都无法作出准确回答. 本篇尝试使用动画来对这个知识点进行讲解,期望读者们可以更加简单地 ...

  10. Springcloud技术分享

    Springcloud技术分享 Spring Cloud 是一套完整的微服务解决方案,基于 Spring Boot 框架,准确的说,它不是一个框架,而是一个大的容器,它将市面上较好的微服务框架集成进来 ...