【BZOJ2588】Count on a tree 题解(主席树+LCA)
前言:其实就是主席树板子啦……只不过变成了树上的查询
--------------------------
题目大意:求树上$u$到$v$路径第$k$大数。
查询静态区间第$k$大肯定是用主席树。我们知道主席树有着优秀的性质:对于前缀和和树上差分等操作都是满足的。感性理解一下:我们在打主席树板子的时候,每次查询都是$query(rt[l-1],rt[r],1,len,k)$,然后$k$与$sum[ls[r]]-sum[ls[l-1]]$比较。所以在进行树上的询问时,我们只要把板子的操作换成$sum[u]+sum[v]-sum[lca]-sum[fa[lca]]$即可。建树的话根据$dfs$序遍历整颗树建立$n$颗权值线段树即可,顺便把树上结点的祖先结点也求了。我们就这样成功AC一道主席树板子题。
PS:一开始RE了,调试代码时发现是把$root$打成$tot$QAQ。
代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn=;
int fa[maxn][],n,m,a[maxn],b[maxn],rt[maxn],tot,len,last,dep[maxn];
int ls[],rs[],sum[];
int head[],cnt;
struct node
{
int next,to;
}edge[];
inline int getpos(int x) {return lower_bound(b+,b+len+,x)-b;}
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void add(int from,int to)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
inline int build(int l,int r)
{
int root=++tot,mid=(l+r)>>;
if (l<r)
{
ls[root]=build(l,mid);
rs[root]=build(mid+,r);
}
return root;
}
inline int update(int k,int l,int r,int root)
{
int dir=++tot;
ls[dir]=ls[root],rs[dir]=rs[root];sum[dir]=sum[root]+;
int mid=(l+r)>>;
if (l<r)
{
if (k<=mid) ls[dir]=update(k,l,mid,ls[root]);
else rs[dir]=update(k,mid+,r,rs[root]);
}
return dir;
}
inline void dfs(int now,int f)
{
fa[now][]=f;dep[now]=dep[f]+;
for (int i=;i<=;i++) fa[now][i]=fa[fa[now][i-]][i-];
rt[now]=update(getpos(a[now]),,len,rt[f]);
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (to==f) continue;
dfs(to,now);
}
}
inline int LCA(int x,int y)
{
if (dep[x]<dep[y]) swap(x,y);
for (int i=;i>=;i--)
if (dep[fa[x][i]]>=dep[y]) x=fa[x][i];
if (x==y) return x;
for (int i=;i>=;i--)
if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
return fa[x][];
}
inline int query(int u,int v,int f,int ff,int l,int r,int k)
{
if (l==r) return l;
int mid=(l+r)>>;
int x=sum[ls[u]]+sum[ls[v]]-sum[ls[f]]-sum[ls[ff]];
if (k<=x) return query(ls[u],ls[v],ls[f],ls[ff],l,mid,k);
else return query(rs[u],rs[v],rs[f],rs[ff],mid+,r,k-x);
}
inline int querypath(int u,int v,int k)
{
int lca=LCA(u,v);
return query(rt[u],rt[v],rt[lca],rt[fa[lca][]],,len,k);
}
signed main()
{
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read(),b[i]=a[i];
for (int i=;i<n;i++)
{
int x=read(),y=read();
add(x,y);add(y,x);
}
sort(b+,b+n+);
len=unique(b+,b+n+)-b-;
rt[]=build(,len);
dfs(,);
for (int i=;i<=m;i++)
{
int u=read(),v=read(),k=read();
u=u^last;
printf("%lld\n",last=b[querypath(u,v,k)]);
}
return ;
}
【BZOJ2588】Count on a tree 题解(主席树+LCA)的更多相关文章
- [Bzoj2588]Count on a tree(主席树+LCA)
Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...
- 【BZOJ2588】Count On a Tree(主席树)
[BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...
- Count on a tree 树上主席树
Count on a tree 树上主席树 给\(n\)个树,每个点有点权,每次询问\(u,v\)路径上第\(k\)小点权,强制在线 求解区间静态第\(k\)小即用主席树. 树上主席树类似于区间上主席 ...
- BZOJ2588 SPOJ10628 Count on a tree 【主席树】
BZOJ2588 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中l ...
- 【bzoj2588】Spoj 10628. Count on a tree 离散化+主席树
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- bzoj 2588 Spoj 10628. Count on a tree(主席树)
Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- bzoj 2588: Spoj 10628. Count on a tree【主席树+倍增】
算是板子,把值离散化,每个点到跟上做主席树,然后查询的时候主席树上用u+v-lca-fa[lca]的值二分 #include<iostream> #include<cstdio> ...
随机推荐
- django框架效率
1. django ORM模式提供食物处理类:transaction.Django默认的事务处理方式时改动就提交,每执行一次就立即提交,这就会花费大量的时间用于IO.Django也支持所有工作都完成后 ...
- 控制流程之while循环, for循环
条件循环:while,语法如下 while 条件: # 循环体 # 如果条件为真,那么循环体则执行,执行完毕后再次循环,重新判断条件... # 如果条件为假,那么循环体不执行,循环终止死循环 基本使用 ...
- day11总结
"""1.什么是函数 具备某一功能的工具===>函数 事先准备工具的过程===>函数的定义 遇到应用场景拿来就用=>函数的调用 2.为何要有函数 内置函 ...
- 从 (a==1&&a==2&&a==3) 成立中看javascript的隐式类型转换
下面代码中 a 在什么情况下会打印 1? var a = ?; if(a == 1 && a == 2 && a == 3){ console.log(1); } 这个 ...
- 数据可视化之powerBI基础(七)一文带你熟悉PowerBI建模视图中的功能
https://zhuanlan.zhihu.com/p/67316729 PowerBI 3月的更新,正式发布了建模视图,而之前只是预览功能.新的建模视图到底有什么用,下面带你认识一下它的主要功能. ...
- Django13 /缓存、信号、django的读写分离
Django13 /缓存.信号.django的读写分离 目录 Django13 /缓存.信号.django的读写分离 1. 缓存 2. 信号 3. django的读写分离 1. 缓存 缓存简述: 缓存 ...
- Zabbix 4.0 API 实践,主机/主机群组 批量添加模板和删除模板
场景 我们日常在管理Zabbix 的时候,经常会需要批量添加模板和批量删除模板,Zabbix页面是提供的批量链接的功能,但是它链接的也只是当前页的主机,我们想扩展这个功能,在链接的时候,可以批量链接整 ...
- 关于在JSP页面识别不了EL表达式的情况
今天在JSP页面接收Controller返回的数据user_nickname,使用EL表达式显示数据发现在页面输出的始终是字符串${user_nickname} 经过查阅资料,问题在于使用的web.x ...
- Windows10系统,截图黑屏,怎么办?
问题:Windows10系统,截图黑屏,怎么办? 图片描述: 原因:也许有 媒体播放软件和系统(或者正在使用的截图软件)起了冲突. 我就开了个这个软件,就完蛋了. 导致了 系统自带的 这两个截图 ...
- vue+springboot文件上传
//vue element-ui组件 <el-upload style="position: relative;top: -40px;left: 240px;" ...