题目

传送们P2831

题目较长,不加以赘述

直接步入正题

首先是数学知识,我们可以先根据给出的任意两只猪构建相应的抛物线,同时再构建完之后应判断抛物线的合法性(比如a小于0啊,等等),公式推演就不在这里说了,这里需要注意的是对于浮点型判断,不能单纯用相等,这里我们可以定义一个十分小的数,将两数差值与其相比,一般用到数为\(1e-6\)就可了,根据两个两只猪得来的抛物线,将其他猪带入,求相应抛物线所能经过的所有猪的状态,与原状态求或,即\(num[i][j]|=(1<<(k-1))\),就是\(k\)在\(i\),\(j\)所在抛物线上时更新该抛物线状态;

处理完这个,我们可以来定义DP数组了,对于这道题,我们只需要一维数组就可了,定义\(F[i]\)数组代表打死\(i\)状态下猪的所需最少小鸟数,首先枚举状态,其次枚举两层猪的个数(用于枚举抛物线),为了避免重复,第二遍枚举我们从第一遍所在位置开始枚举,在这里我们可以稍稍进行一下优化,在进行第一遍枚举时,如果这只猪已经包含在当前状态内,我们可以直接跳过,因为当我们跳过后,第二遍枚举有两种情况,即第一种,第二遍枚举的猪也包含在当前状态下,这时候可以直接跳过,第二种,所枚举的猪并不在当前状态下,需要进行操作,但是第一层循环会重复操作,故在进行第一遍枚举时,如果这只猪已经包含在当前状态内,我们可以直接跳过,来进行一个优化;

然后是转移方程,分为两种情况

  1. \(i\)和\(j\)相等时,那么我们有\(f[i|(1<<(j-1))]=min(f[i|(1<<(j-1))],f[i]+1)\),这种情况下\(F[i][(1<<(j-1))]\)只需要转移上一状态,或者在当前状态下多射出一直小鸟;
  2. \(i\)和\(j\)不相等时,\(f[i|num[j][k]]=min(f[i|num[j][k]],f[i]+1)\),解释同上;

还有一点,

因为本道题是多组测试数据,记得初始化

接下来是代码

#include<bits/stdc++.h>
using namespace std;
int T,n,m,num[20][20],f[1000000];
double x[20],y[20];
bool same(double x,double y){return fabs(x-y)<1e-6;}//判断相等与否的函数
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%lf%lf",&x[i],&y[i]);
memset(num,0,sizeof(num));//num数组初始化
for(int i=1;i<=n;i++){//第一遍枚举猪
for(int j=i+1;j<=n;j++){//第二遍枚举猪
if(same(x[i],x[j]))continue;//x[i]=x[j]无法构成抛物线
double a=(y[j]/x[j]-y[i]/x[i])/(x[j]-x[i]);//公式推导
if(a>0)continue;//a>0不合法抛物线,跳过
double b=y[i]/x[i]-a*x[i];//公式推导
for(int k=1;k<=n;k++){//枚举猪,判断其他猪是不是可以在该抛物线上
if(same(a*x[k]+b,y[k]/x[k]))num[i][j]|=(1<<(k-1));//如果可以,更新
}
}
}
memset(f,0x3f3f3f3f,sizeof(f));//初始化f数组
f[0]=0;//打死0这个状态下的猪需要小鸟0只
for(int i=0;i<=(1<<n)-1;i++){//枚举状态
for(int j=1;j<=n;j++){//第一层枚举猪
if(!(i&(1<<(j-1)))){//优化(具体见上)
for(int k=j;k<=n;k++){//第二层枚举猪
if(j==k)f[i|(1<<(j-1))]=min(f[i|(1<<(j-1))],f[i]+1);//j=k的转移情况
f[i|num[j][k]]=min(f[i|num[j][k]],f[i]+1);//j!=k的转移情况
} }
}
}
printf("%d\n",f[(1<<n)-1]);//输出打死(1<<n)-1(即所有猪)状态下猪所需要的小鸟数
}
}

状压DP之愤怒的小鸟的更多相关文章

  1. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  2. NOIP2016愤怒的小鸟 [状压dp]

    愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...

  3. [Luogu P2831] 愤怒的小鸟 (状压DP)

    题面: 传送门:https://www.luogu.org/problemnew/show/P2831 Solution 首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索. ...

  4. Noip2016愤怒的小鸟(状压DP)

    题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...

  5. luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)

    由范围可以想到状压dp 两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的 这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下 ...

  6. NOIP2016愤怒的小鸟 题解报告 【状压DP】

    题目什么大家都清楚 题解 我们知道,三点确定一条抛物线,现在这条抛物线过原点,所以任意两只猪确定一条抛物线.通过运算的出对于两头猪(x1,y1),(x2,y2),他们所在抛物线a=(y1*x2-y2* ...

  7. 洛谷P2831 愤怒的小鸟(状压dp)

    题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...

  8. [Noip2016]愤怒的小鸟(状压DP)

    题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...

  9. 【NOIP2016】愤怒的小鸟(状压DP)

    题意: Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 ...

随机推荐

  1. 密码学DAY1_02

    目录 1.1 ASCII编码 1.2 凯撒加密 1.2.1 中国古代加密 1.2.2 外国加密 1.2.3 凯撒位移加密--JAVA代码实现 1.2.4 频度分析法破解恺撒加密 1.3现代常用的加密方 ...

  2. STL常用序列容器

    这里简要的记述一下STL常用容器的实现原理,要点等内容. vector vector是比较常用的stl容器,用法与数组是非类似,其内部实现是连续空间分配,与数组的不同之处在于可弹性增加空间,而arra ...

  3. java关键字volatile用法详解

    volatile关键字想必大家都不陌生,在java 5之前有着挺大的争议,在java 5之后才逐渐被大家接受,同时作为java的关键字之一,其作用自然是不可小觑的,要知道它是java.util.con ...

  4. 创建sudo -i免密权限账户

    项目原因,服务器需要创建普通用户,但又不能让用户拿到root密码. 创建用户 [root@bogon ~]# groupadd connect [root@bogon ~]# useradd -g c ...

  5. 源码分析(2)-LinkedHashMap(JDK1.8)

    1.概述 LinkedHashMap继承自HashMap:在HashMap基础上,通过维护一条双向链表,解决了HashMap键值对遍历顺序和插入顺序一致的问题. 想了解LinkedHashMap源码, ...

  6. How to Use tomcat on Linux

    看是否有tomcat在运行 ps -ef |grep tomcat eg: -bash-4.1# ps -ef |grep tomcat root 1 0 0 14:26 ? 00:00:00 /bi ...

  7. thinkphp5.0使用官方验证码插件

    1.首先使用Composer下载验证码插件. 安装完成后,使用以下命令修改composer配置文件,使用国内镜像.原因你懂的. composer config -g repo.packagist co ...

  8. filebeat v6.3 多行合并的步骤 多个表达式同时匹配

    配置文件位于/etc/filebeat/filebeat.yml,就是filebeat的主配置文件打开文件filebeat.yml,搜索multiline:,默认是注释的,常用的有如下三个配置: mu ...

  9. php 替换模板中的 PHP源码标签字符方法

    //替换php代码function RepPhpAspJspcode($string){ global $public_r; if(!$public_r[candocode]){ //$string= ...

  10. Chrome扩展移植到Edge浏览器教程

    微软在推出Edge浏览器之初,就把能够使用扩展(extension)作为一个重要功能.在Win10一周年更新版(1607)中,这项功能正式向广大用户推出(当然,Insider用户早就测试了一段时间了) ...