Luogu P4271 [USACO18FEB]New Barns P
题意
给一个一开始没有点的图,有 \(q\) 次操作,每次为加点连边或者查询一个点到连通块内所有点的距离最大值。
\(\texttt{Data Range}:1\leq q\leq 10^5\)
题解
跟「雅礼集训 2017 Day5」远行很像的一个题,都是 LCT 维护直径。
注意到树上一个点到其他点的距离最大值只可能在直径的两个端点处取到,而且又存在加边操作,所以可以直接使用 LCT 来维护。
当合并两个连通块的时候需要在两个连通块各自的直径端点中选两个成为新的直径,需要讨论 \(6\) 种情况,这个暴力搞就行了。
但是这个题不用这么麻烦。因为每一次合并的一边是一个点,所以只需要讨论两次就好了。
同时,维护直径的两个端点和直径的距离可以使用并查集来维护,查询两点距离的话就先 split 把两个点的路径拉出来放到同一个 Splay 上,再用根节点的大小减 \(1\) 即可。
代码
#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=3e5+51;
ll n,c,d,x,fx,fy,mx,lx,rx;
char op;
ll ffa[MAXN],l[MAXN],r[MAXN],dist[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
inline ll find(ll x)
{
return x==ffa[x]?x:ffa[x]=find(ffa[x]);
}
namespace LCT{
struct Node{
ll fa,rv,sz;
ll ch[2];
};
struct LinkCutTree{
Node nd[MAXN];
ll st[MAXN];
#define ls nd[x].ch[0]
#define rs nd[x].ch[1]
inline bool nroot(ll x)
{
return nd[nd[x].fa].ch[0]==x||nd[nd[x].fa].ch[1]==x;
}
inline void update(ll x)
{
nd[x].sz=nd[ls].sz+nd[rs].sz+1;
}
inline void reverse(ll x)
{
swap(ls,rs),nd[x].rv^=1;
}
inline void spread(ll x)
{
if(nd[x].rv)
{
ls?reverse(ls):(void)1,rs?reverse(rs):(void)1;
nd[x].rv=0;
}
}
inline void rotate(ll x)
{
ll fa=nd[x].fa,gfa=nd[fa].fa;
ll dir=nd[fa].ch[1]==x,son=nd[x].ch[!dir];
if(nroot(fa))
{
nd[gfa].ch[nd[gfa].ch[1]==fa]=x;
}
nd[x].ch[!dir]=fa,nd[fa].ch[dir]=son;
if(son)
{
nd[son].fa=fa;
}
nd[fa].fa=x,nd[x].fa=gfa,update(fa);
}
inline void splay(ll x)
{
ll fa=x,gfa,cur=0;
st[++cur]=fa;
while(nroot(fa))
{
st[++cur]=fa=nd[fa].fa;
}
while(cur)
{
spread(st[cur--]);
}
while(nroot(x))
{
fa=nd[x].fa,gfa=nd[fa].fa;
if(nroot(fa))
{
rotate((nd[fa].ch[0]==x)^(nd[gfa].ch[0]==fa)?x:fa);
}
rotate(x);
}
update(x);
}
inline void access(ll x)
{
for(register int i=0;x;x=nd[i=x].fa)
{
splay(x),rs=i,update(x);
}
}
inline void makeRoot(ll x)
{
access(x),splay(x),reverse(x);
}
inline ll findRoot(ll x)
{
access(x),splay(x);
while(ls)
{
spread(x),x=ls;
}
return x;
}
inline void split(ll x,ll y)
{
makeRoot(x),access(y),splay(y);
}
inline void link(ll x,ll y)
{
makeRoot(x);
if(findRoot(y)!=x)
{
nd[x].fa=y;
}
}
#undef ls
#undef rs
};
}
LCT::LinkCutTree lct;
inline ll getDist(ll x,ll y)
{
lct.split(x,y);
return lct.nd[y].sz-1;
}
int main()
{
n=read();
for(register int i=1;i<=n;i++)
{
ffa[i]=l[i]=r[i]=i,lct.nd[i].sz=1;
}
for(register int i=0;i<n;i++)
{
cin>>op,x=read();
if(op=='B')
{
++c;
if(x==-1)
{
continue;
}
fx=c,fy=find(x),mx=dist[fx],lx=l[fx],rx=r[fx];
if(mx<dist[fy])
{
lx=l[fy],rx=r[fy],mx=dist[fy];
}
lct.link(c,x);
if((d=getDist(l[fx],l[fy]))>mx)
{
mx=d,lx=l[fx],rx=l[fy];
}
if((d=getDist(l[fx],r[fy]))>mx)
{
mx=d,lx=l[fx],rx=r[fy];
}
l[fx]=lx,r[fx]=rx,dist[fx]=mx,ffa[fy]=fx;
}
if(op=='Q')
{
fx=find(x);
printf("%d\n",max(getDist(x,l[fx]),getDist(x,r[fx])));
}
}
}
Luogu P4271 [USACO18FEB]New Barns P的更多相关文章
- P4271 [USACO18FEB]New Barns
题目 P4271 [USACO18FEB]New Barns 做法 这题很长见识啊!! 知识点:两棵树\((A,B)\)联通后,新树的径端点为\(A\)的径端点与\(B\)的径端点的两点 不断加边,那 ...
- 线段树||BZOJ5194: [Usaco2018 Feb]Snow Boots||Luogu P4269 [USACO18FEB]Snow Boots G
题面:P4269 [USACO18FEB]Snow Boots G 题解: 把所有砖和靴子排序,然后依次处理每一双靴子,把深度小于等于它的砖块都扔线段树里,问题就转化成了求线段树已有的砖块中最大的砖块 ...
- 题解【[USACO18FEB]New Barns 】
浅谈一下对于这题做完之后的感受(不看题解也是敲不出来啊qwq--) 题意翻译 Farmer John注意到他的奶牛们如果被关得太紧就容易吵架,所以他想开放一些新的牛棚来分散她们. 每当FJ建造一个新牛 ...
- [usaco18Feb] New Barns
题意 每次新建一个节点,并与一个已知节点连边.(或者不连).多次询问以某个已知点点出发的最远路径长度. 分析 显然,在任何时候图都是一个森林.由树的直径算法可知,与某点最远距的点必然是树的直径的一段. ...
- Luogu P4270 [USACO18FEB]Cow Gymnasts (打表找规律)
题意 传送门 题解 首先我们不竖着看奶牛而是横着看.从下往上把奶牛叫做处于第0,1,2...0,1,2...0,1,2...层.那么相当于第000层的不动,第111层的平移一格,第222层的平移222 ...
- LUOGU P4088 [USACO18FEB]Slingshot(线段树)
传送门 解题思路 推了推式子发现是个二维数点,想了想似乎排序加线段树难写,就写了个树套树,结果写完看见空间才\(128M\)..各种奇技淫巧卡空间还是\(MLE\)到天上.后来只好乖乖的写排序+线段树 ...
- LCT[Link-Cut-Tree学习笔记]
部分摘抄于 FlashHu candy99 所以文章篇幅较长 请有足够的耐心(不是 其实不用学好splay再学LCT的-/kk (至少现在我平衡树靠fhq) 如果学splay的话- 也许我菜吧-LCT ...
- 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- Luogu 魔法学院杯-第二弹(萌新的第一法blog)
虽然有点久远 还是放一下吧. 传送门:https://www.luogu.org/contest/show?tid=754 第一题 沉迷游戏,伤感情 #include <queue> ...
随机推荐
- 2019.7.12 sdfzoier做题统计
lixf_lixf :9 P1981 表达式求值 P1076 寻宝 P1199 三国游戏 P1308 统计单词数 P1190 接水问题 P1158 导弹拦截 P1070 道路游戏 P1069 细胞分裂 ...
- 伺服电机的Arduino库函数
servo.attach(pin) //连接伺服电机的信号线于控制板的引脚,9或10号引脚servo.attach(pin, min, max) servo: a variable of type ...
- 怎么写一个Activity
a.新建一个类继承Actitvity b.重写oncreate方法 setContentView(R.layout.XXX);//设置布局文件 c.注册activity <activity an ...
- 详解Class加载过程
1.Class文件内容格式 2.一个class文件是被加载到内存的过程是怎样的? loading 把一个class文件装到内存里,class文件是一个二进制,一个个的字节 linking Verifi ...
- 用于ASP.net的MVC模块
下载MVCBricks_SRC - 492.58 KB 表的内容 介绍系统要求游戏闪屏的最终考虑历史 介绍 自从我写上一篇关于ASP的文章以来,已经有很长时间了.净的话题.这次我决定写一些关于它的东西 ...
- 视频+图文教程 | Java之安装JDK与环境配置
演示所用软件JDK 8与Eclipse(Java开发工具)软件下载链接: 链接:https://pan.baidu.com/s/1Vg9ulrQH8WlGRAE89Y02UA提取码:swwl 视频介绍 ...
- (转载)跟Classic ARM 处理器说拜拜——Atmel SAMA5D3 Xplained开发板评测
2014 年 4 月 10 日 时间: 下午 3:15 作者: 幸得安然 电子产业的蓬勃发展带来了史无前例的生活.生产大跃进,但是,人们在享受发展喜悦的同时又不得不面临现实现状的囧境--在以移动电子设 ...
- 第四届58topcoder编程大赛--地图路径规划
layout: post title: 第四届58topcoder编程大赛 subtitle: 58ACM catalog: true tags: - A* 算法 - C++ - 程序设计 问题及背景 ...
- 【原创】xenomai内核解析--xenomai与普通linux进程之间通讯XDDP(二)--实时与非实时关联(bind流程)
版权声明:本文为本文为博主原创文章,转载请注明出处.如有问题,欢迎指正.博客地址:https://www.cnblogs.com/wsg1100/ 1.概述 上篇文章介绍了实时端socket创建和配置 ...
- centos7 shell 安装docker redis mongodb 等
脚本下载: 百度网盘 提取码: wc4r 下载后上传到 服务器 chmod +x docker.sh sh docker.sh