Description

The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and must wander through the maze facing zombies, chainsaw-wielding psychopaths, hippies, and other terrors on their quest to find the exit. 

One popular maze-walking strategy guarantees that the visitor will eventually find the exit. Simply choose either the right or left wall, and follow it. Of course, there's no guarantee which strategy (left or right) will be better, and the path taken is seldom
the most efficient. (It also doesn't work on mazes with exits that are not on the edge; those types of mazes are not represented in this problem.) 

As the proprieter of a cornfield that is about to be converted into a maze, you'd like to have a computer program that can determine the left and right-hand paths along with the shortest path so that you can figure out which layout has the best chance of confounding
visitors.

Input

Input to this problem will begin with a line containing a single integer n indicating the number of mazes. Each maze will consist of one line with a width, w, and height, h (3 <= w, h <= 40), followed by h lines of w characters each that represent the maze
layout. Walls are represented by hash marks ('#'), empty space by periods ('.'), the start by an 'S' and the exit by an 'E'. 

Exactly one 'S' and one 'E' will be present in the maze, and they will always be located along one of the maze edges and never in a corner. The maze will be fully enclosed by walls ('#'), with the only openings being the 'S' and 'E'. The 'S' and 'E' will also
be separated by at least one wall ('#'). 

You may assume that the maze exit is always reachable from the start point.

Output

For each maze in the input, output on a single line the number of (not necessarily unique) squares that a person would visit (including the 'S' and 'E') for (in order) the left, right, and shortest paths, separated by a single space each. Movement from one
square to another is only allowed in the horizontal or vertical direction; movement along the diagonals is not allowed.

Sample Input

2
8 8
########
#......#
#.####.#
#.####.#
#.####.#
#.####.#
#...#..#
#S#E####
9 5
#########
#.#.#.#.#
S.......E
#.#.#.#.#
#########

Sample Output

37 5 5
17 17 9
这道题求最短路可以用bfs,但是求绕墙走的时间时不用搜索,因为一定只有唯一的一条路,绕墙走有优先考虑左边和右边两种情况,考虑左边的时候,如果能往左走就往做,否则再考虑能不能向前走,即按原来的方向,如果也不行,再看能不能往右走,如果三种情况都不行,就往后走,这里要开一个数组记录方向。
#include<stdio.h>
#include<string.h>
#include<math.h>
char map[45][45];
int tab[8][2]={0,0,0,1,-1,0,0,-1,1,0},dir,b[45][45];
int q[1111111][2],x3,y3,x2,y2,n,m; void bfs()
{
memset(q,0,sizeof(q));
memset(b,0,sizeof(b));
b[x2][y2]=1;
int front=1,rear=1,xx,yy,i,x,y;
q[front][0]=x2;q[front][1]=y2;
while(front<=rear){
x=q[front][0];
y=q[front][1];
if(x==x3 && y==y3)break;
front++;
for(i=1;i<=4;i++){
xx=x+tab[i][0];yy=y+tab[i][1];
if(xx>=0 && xx<m && yy>=0 && yy<n && map[xx][yy]!='#'){
map[xx][yy]='#';
b[xx][yy]=b[x][y]+1;
rear++;
q[rear][0]=xx;
q[rear][1]=yy;
}
}
}
return ;
} int main()
{
int T,i,j,num1,num2,num3,x,y,dir1,xx,yy,dir2;
scanf("%d",&T);
while(T--)
    {
    scanf("%d%d",&n,&m);
    for(i=0;i<m;i++){
    scanf("%s",map[i]);
    for(j=0;j<n;j++){
    if(map[i][j]=='S'){
    x2=i;y2=j;
    }
    else if(map[i][j]=='E'){
    x3=i;y3=j;
    }
    }
   }
   if(y2==1)dir=1;
   else if(x2==m)dir=2;
   else if(y2==n)dir=3;
   else if(x2==1)dir=4;
   num1=0;
   
   
   memset(b,0,sizeof(b));
   x=x2,y=y2,num1=1,dir1=dir;
   while(1)
   {
if(x==x3 && y==y3)break;
num1++;
//printf("%d %d\n",x+1,y+1);
    xx=x+tab[dir1%4+1][0];
    yy=y+tab[dir1%4+1][1];
if(xx>=0 && xx<m && yy>=0 && yy<n && map[xx][yy]!='#'){
    x=xx;y=yy;
dir1=dir1%4+1;continue;
   }
   
   xx=x+tab[dir1][0];
   yy=y+tab[dir1][1];
   if(xx>=0 && xx<m && yy>=0 && yy<n && map[xx][yy]!='#'){
    x=xx;y=yy;continue;
    }
   
    xx=x+tab[(dir1==1)?4:(dir1-1)][0];
    yy=y+tab[(dir1==1)?4:(dir1-1)][1];
    if(xx>=0 && xx<m && yy>=0 && yy<n && map[xx][yy]!='#'){
    x=xx;y=yy;
dir1=(dir1==1?4:(dir1-1));continue;
   }
   
   
   dir1=(dir1+1)%4+1;
   x=x+tab[dir1][0];
   y=y+tab[dir1][1];
   
    }
    //printf("%d\n",num1);
   
    memset(b,0,sizeof(b));
   x=x2,y=y2,num2=1,dir2=dir;
   while(1)
   {
   
if(x==x3 && y==y3)break;
num2++;
//printf("%d %d\n",x+1,y+1); xx=x+tab[(dir2==1)?4:(dir2-1)][0];
    yy=y+tab[(dir2==1)?4:(dir2-1)][1];
    if(xx>=0 && xx<m && yy>=0 && yy<n && map[xx][yy]!='#'){
    x=xx;y=yy;
dir2=(dir2==1?4:(dir2-1));continue;
   }
   
    xx=x+tab[dir2][0];
   yy=y+tab[dir2][1];
   if(xx>=0 && xx<m && yy>=0 && yy<n && map[xx][yy]!='#'){
    x=xx;y=yy;continue;
    }
   
xx=x+tab[dir2%4+1][0];
    yy=y+tab[dir2%4+1][1];
if(xx>=0 && xx<m && yy>=0 && yy<n && map[xx][yy]!='#'){
    x=xx;y=yy;
dir2=dir2%4+1;continue;
   }
   dir2=(dir2+1)%4+1;
   x=x+tab[dir2][0];
   y=y+tab[dir2][1];
   
    }
    map[x2][y2]='#';
   bfs();
   num3=b[x3][y3];
   printf("%d %d %d\n",num1,num2,num3);
    }
    return 0;
}

poj3083 Children of the Candy Cor的更多相关文章

  1. POJ3083——Children of the Candy Corn(DFS+BFS)

    Children of the Candy Corn DescriptionThe cornfield maze is a popular Halloween treat. Visitors are ...

  2. poj3083 Children of the Candy Corn BFS&&DFS

    Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11215   Acce ...

  3. POJ3083 Children of the Candy Corn(搜索)

    题目链接. 题意: 先沿着左边的墙从 S 一直走,求到达 E 的步数. 再沿着右边的墙从 S 一直走,求到达 E 的步数. 最后求最短路. 分析: 最短路好办,关键是沿着墙走不太好想. 但只要弄懂如何 ...

  4. POJ3083 Children of the Candy Corn(Bfs + Dfs)

    题意:给一个w*h的迷宫,其中矩阵里面 S是起点,E是终点,“#”不可走,“.”可走,而且,S.E都只会在边界并且,不会在角落,例如(0,0),输出的话,每组数据就输出三个整数,第一个整数,指的是,以 ...

  5. POJ-3083 Children of the Candy Corn (BFS+DFS)

    Description The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and mus ...

  6. poj3083 Children of the Candy Corn 深搜+广搜

    这道题有深搜和广搜.深搜还有要求,靠左或靠右.下面以靠左为例,可以把简单分为上北,下南,左西,右东四个方向.向东就是横坐标i不变,纵坐标j加1(i与j其实就是下标).其他方向也可以这样确定.通过上一步 ...

  7. poj 3083 Children of the Candy Corn

    点击打开链接 Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8288 ...

  8. Children of the Candy Corn 分类: POJ 2015-07-14 08:19 7人阅读 评论(0) 收藏

    Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10933   Acce ...

  9. POJ 3083 Children of the Candy Corn bfs和dfs

      Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8102   Acc ...

随机推荐

  1. Lambda表达式你会用吗?

    函数式编程 在正式学习Lambda之前,我们先来了解一下什么是函数式编程 我们先看看什么是函数.函数是一种最基本的任务,一个大型程序就是一个顶层函数调用若干底层函数,这些被调用的函数又可以调用其他函数 ...

  2. 一文读懂 Kubernetes APIServer 原理

    前言 整个Kubernetes技术体系由声明式API以及Controller构成,而kube-apiserver是Kubernetes的声明式api server,并为其它组件交互提供了桥梁.因此加深 ...

  3. centos&linux

    who am i 查看是哪一个用户 init 0关机 ifconfig用于配置网络或显示当前网络接口的状态 eth0是网卡的名字 第一行:flags后面的up指的是网卡处于运行状态,running连接 ...

  4. linux串口编程

    按照对linux系统的理解,串口编程的顺序无非就是open,read,write,close,而串口有波特率.数据位等重要参数需要设置,因此还应该用到设置函数,那么接下来就带着这几个问题去学习linu ...

  5. Seata RPC 模块的重构之路

    简介: RPC 模块是我最初研究 Seata 源码开始的地方,因此我对 Seata 的 RPC 模块有过一些深刻研究,在我研究了一番后,发现 RPC 模块中的代码需要进行优化,使得代码更加优雅,交互逻 ...

  6. Scrapy——將爬取圖片下載到本地

    1. Spider程序: 1 import scrapy, json 2 from UnsplashImageSpider.items import ImageItem 3 4 class Unspl ...

  7. Vue之创建组件之配置路由!

    Vue之创建组件之配置路由!== 第一步: 当然就是在我们的试图文件夹[views]新建一个文件夹比如home 在home文件夹下面新建一个文件index.vue 第二步:在router目录下做如下事 ...

  8. MySQL设计之Schema与数据类型优化

    一.数据类型优化 1.更小通常更好 应该尽量使用可以正确存储数据的最小数据类型,更小的数据类型通常更快,因为它们占用更少的磁盘.内存和CPU缓存,并且处理时需要的CPU周期更少,但是要确保没有低估需要 ...

  9. MySQL调优性能监控之show profile

    用show profile查询工具指定具体的type show profile在mysql5.7之后过时 show profile命令用于跟踪执行过的sql语句的资源消耗信息,可以帮助查看sql语句的 ...

  10. calc, support, media各自的含义及用法?

    @support主要是用于检测浏览器是否支持CSS的某个属性,其实就是条件判断,如果支持某个属性,你可以写一套样式,如果不支持某个属性,你也可以提供另外一套样式作为替补. calc() 函数用于动态计 ...