题意:nxn的棋盘 有m个坏点 求能在棋盘上放多少个马不会互相攻击

题解:这个题仔细想想居然和方格取数是一样的!!!

   每个马他能攻击到的地方的坐标 (x+y)奇偶性不一样 于是就黑白染色

   s->黑 白->t

   按条件连黑->白 跑最小割 = 最大流

   感性理解一下 就是先把所有的点都放上 得到最大的收益

   然后删掉一些点使得合法 删掉一个黑点 减去黑点的收益 和黑点相连的白点受到的束缚就减少了

   如果s和t点能联通的话 表示还有黑点和白点连通 问题就转化为了最小割

#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
int n, m, s, t, cnt, maxflow;
int broke[205][205]; struct node {
int to, nex, val;
}E[400005];
int head[40005];
int cur[40005];
int dx[] = {-1, -1, 1, 1, -2, -2, 2, 2};
int dy[] = {2, -2, 2, -2, 1, -1, 1, -1}; void addedge(int x, int y, int va) {
E[++cnt].to = y; E[cnt].nex = head[x]; head[x] = cnt; E[cnt].val = va;
E[++cnt].to = x; E[cnt].nex = head[y]; head[y] = cnt; E[cnt].val = 0;
} int dep[40005];
int inque[40005];
bool bfs() {
for(int i = 0; i <= t; i++) dep[i] = INF, inque[i] = 0, cur[i] = head[i];
queue<int> que;
dep[s] = 0; inque[s] = 1;
que.push(s); while(!que.empty()) {
int u = que.front();
que.pop();
inque[u] = 0; for(int i = head[u]; i; i = E[i].nex) {
int v = E[i].to;
if(E[i].val > 0 && dep[v] > dep[u] + 1) {
dep[v] = dep[u] + 1;
if(!inque[v]) {
que.push(v);
inque[v] = 1;
}
}
}
}
if(dep[t] != INF) return true;
return false;
} int vis;
int dfs(int x, int flow) {
if(x == t) {
vis = 1;
maxflow += flow;
return flow;
} int used = 0;
int rflow = 0;
for(int i = cur[x]; i; i = E[i].nex) {
cur[x] = i;
int v = E[i].to;
if(E[i].val > 0 && dep[v] == dep[x] + 1) {
if(rflow = dfs(v, min(flow - used, E[i].val))) {
used += rflow;
E[i].val -= rflow;
E[i ^ 1].val += rflow;
if(used == flow) break;
}
}
}
return used;
} void dinic() {
maxflow = 0;
while(bfs()) {
vis = 1;
while(vis) {
vis = 0;
dfs(s, INF);
}
}
} int id(int x, int y) {
return (x - 1) * n + y;
} bool check(int x, int y) {
if(x >= 1 && x <= n && y >= 1 && y <= n) return true;
return false;
} int main() {
cnt = 1;
scanf("%d%d", &n, &m);
s = 0;
t = n * n + 1; for(int i = 1; i <= m; i++) {
int x, y; scanf("%d%d", &x, &y);
broke[x][y] = 1;
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
int ii = id(i, j);
if(broke[i][j]) continue; if((i + j) % 2 != 1) {
addedge(s, ii, 1);
for(int k = 0; k < 8; k++) {
int ax = i + dx[k];
int ay = j + dy[k];
if(check(ax, ay) && !broke[ax][ay]) addedge(ii, id(ax, ay), INF);
}
} else addedge(ii, t, 1);
}
}
dinic();
printf("%d\n", n * n - m - maxflow);
return 0;
}

P3355 骑士共存问题 (最小割)的更多相关文章

  1. 洛谷.3355.骑士共存问题(最小割ISAP)

    题目链接 一个很暴力的想法:每个点拆点,向不能同时存在的连边 但是这样边太多了,而且会有很多重复.我不会说我还写了还没过样例 我们实际就是在做一个最大匹配.考虑原图,同在黄/红格里的骑士是互不攻击的, ...

  2. P3355 骑士共存问题

    P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...

  3. P3355 骑士共存问题 二分建图 + 当前弧优化dinic

    P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...

  4. 【Luogu】P3355骑士共存问题(最小割)

    题目链接 像题面那样把棋盘染成红黄点.发现骑士迈一步能到达的点的颜色一定是跟他所在的格子的颜色不同的.于是(woc哪来的于是?这个性质有这么明显吗?)从源点向所有红点连边,从所有黄点向汇点连边,红点向 ...

  5. 洛谷P3355 骑士共存问题(最小割)

    传送门 de了两个小时的bug愣是没发现错在哪里……没办法只好重打了一遍竟然1A……我有点想从这里跳下去了…… 和方格取数问题差不多,把格子按行数和列数之和的奇偶性分为黑的和白的,可以发现某种颜色一定 ...

  6. 洛谷P3355 骑士共存问题

    题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...

  7. P3355 骑士共存问题 网络流

    骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最 ...

  8. 2018.08.02 洛谷P3355 骑士共存问题(最小割)

    传送门 这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了. 代码: #include<bits/s ...

  9. 洛谷 P3355 骑士共存问题【最小割】

    同方格取数问题:https://www.cnblogs.com/lokiii/p/8430720.html 记得把障碍点去掉,不连边也不计入sum #include<iostream> # ...

随机推荐

  1. 万万没想到,JVM内存区域的面试题也可以问的这么难?

    二.Java内存区域 1.Java内存结构 内存结构 程序计数器 当前线程所执行字节码的行号指示器.若当前方法是native的,那么程序计数器的值就是undefined. 线程私有,Java内存区域中 ...

  2. 科来网络通讯协议图2019版(OSI七层模型)

    来源:http://www.colasoft.com.cn/download/protocols_map.php 自己把它转成了图片,好做查看:https://www.lanzous.com/ib5h ...

  3. GCC 概述:C 语言编译过程详解

    Tags: C Description: 关于 GCC 的个人笔记 GCC 概述 对于 GCC 6.1 以及之后的版本,默认使用的 C++ 标准是 C++ 14:使用 -std=c++11 来指定使用 ...

  4. appium元素识别方式实战

    github代码::  https://github.com/w550856163/App_Demo.git  tag: V1.1 Appium Inspector定位工具界面介绍:  Selecte ...

  5. 通过trace分析优化其如何选择执行计划

    mysql5.6提供了对sql的跟踪trace,通过trace文件能够进一步了解为什么优化其选择执行计划a而不选b执行计划,帮助我们更好的理解优化其的行为. 使用方式:首先打开trace,设置格式为j ...

  6. 给mysql选择调度策略

    在gun/linux上,队列调度决定了到块设备的请求实际上发送到底层设置的顺序.默认情况下是cfg(完全公平排队)策略,随意使用的笔记本和台式机使用中个调度策略没有问题,并且有助于防止io饥饿,但是用 ...

  7. 【MySQL】centos6中/etc/init.d/下没有mysqld启动文件,怎么办

    如果/etc/init.d/下面没有mysqld的话,service mysqld start也是不好使的,同样,chkconfig mysqld on也是不能用 解决办法: 将mysql的mysql ...

  8. kubernets之服务的实现方式

    一  服务如何通过kubernetes集群的组件来实现其功能 1.1  节点上的所有的服务相关的功能实现都是通过节点上面的kube-proxy来实现的,服务提供了一个或者多个服务IP以及端口对客户端开 ...

  9. Test typora

    目录 0. test 0.5 easy test 1. problem 1 2. problem 2 3. problem 3 import numpy as np import matplotlib ...

  10. Http中的options请求

    引自:https://www.jianshu.com/p/5cf82f092201.https://www.cnblogs.com/mamimi/p/10602722.html 一.options是什 ...