[济南集训 2017] 求gcd之和
题目大意:
求\(\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\)
解题报告:
有一个结论:一个数的所有因子的欧拉函数之和等于这个数本身
运用这个我们可以开始推:
\(\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\)
\(\sum_{i=1}^n\sum_{j=1}^m\sum_{d|gcd(i,j)}\phi(d)\)
\(\sum_{i=1}^n\sum_{j=1}^m\sum_{d|i,j}\phi(d)\)
\(\sum_{d=1}^n\phi(d)*(n/d)*(m/d)\)
对于最后一个式子可以数论分块解决,但此题中不需要
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=1e7+5,mod=998244353;
typedef long long ll;
bool vis[N];int prime[N],num=0,n,m;ll sum[N],phi[N];
void solve(){
int to;
phi[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++num]=i;
phi[i]=i-1;
}
for(int j=1;j<=num && prime[j]*i<=n;j++){
to=i*prime[j];vis[to]=true;
if(i%prime[j])phi[to]=phi[i]*(prime[j]-1)%mod;
else{
phi[to]=phi[i]*prime[j]%mod;
break;
}
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+phi[i],sum[i]%=mod;
}
void work()
{
cin>>n>>m;
if(n>m)swap(n,m);
solve();
ll ans=0;
RG int j;
for(RG int i=1;i<=n;i=j+1){
j=Min(n/(n/i),m/(m/i));
ans+=((sum[j]-sum[i-1])%mod+mod)%mod*(n/i)%mod*(m/i)%mod;
if(ans>=mod)ans-=mod;
}
printf("%lld\n",ans);
}
int main()
{
freopen("hoip.in","r",stdin);
freopen("hoip.out","w",stdout);
work();
return 0;
}
[济南集训 2017] 求gcd之和的更多相关文章
- cogs 2752. [济南集训 2017] 数列运算
2752. [济南集训 2017] 数列运算 ★★☆ 输入文件:sequenceQBXT.in 输出文件:sequenceQBXT.out 简单对比时间限制:1 s 内存限制:512 ...
- [CodePlus 2017 11月赛]晨跑 题解(辗转相除法求GCD)
[CodePlus 2017 11月赛]晨跑 Description "无体育,不清华"."每天锻炼一小时,健康工作五十年,幸福生活一辈子".在清华,体育运动绝 ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
- [LOJ 6031]「雅礼集训 2017 Day1」字符串
[LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...
- [LOJ 6029]「雅礼集训 2017 Day1」市场
[LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...
- loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主
#2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 "A fight? Co ...
- 【CJOJ2512】gcd之和(莫比乌斯反演)
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直 ...
- LOJ_6045_「雅礼集训 2017 Day8」价 _最小割
LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...
- Loj #2324. 「清华集训 2017」小 Y 和二叉树
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...
随机推荐
- JAVA序列化基础知识
1.序列化是干什么的? 简单说就是为了保存在内存中的各种对象的状态(也就是实例变量,不是方法),并且可以把保存的对象状态再读出来.虽然你可以用你自己的各种各样的方法来保 存object states, ...
- 2017 清北济南考前刷题Day 3 morning
实际得分:100+0+0=100 T1 右上角是必败态,然后推下去 发现同行全是必胜态或全是必败态,不同行必胜必败交叉 列同行 所以n,m 只要有一个是偶数,先手必胜 #include<cstd ...
- [USACO13JAN] Seating
https://www.luogu.org/problem/show?pid=3071 题目描述 To earn some extra money, the cows have opened a re ...
- django + nginx + uwsgi + websocket
最近使用django框架做了一个简单的聊天机器人demo, 开发的过程中使用了django自带的websocket模块,当使用django框架自带的wsgi服务去启动的话,没有什么问题.如果要使用uw ...
- vue-router 组件实例被复用问题
最近在开发过程中遇到如下问题: 当前路由是这样的 http://127.0.0.1:3010/order?keywords=22 只改变keywords的值,路由不跳转 http://127.0.0. ...
- H5 音频标签自定义样式修改以及添加播放控制事件
说明: 需求要求这个音频标签首先要是可适配移动端浏览器的,音频样式就是参考微信做的. 最终效果如下: 具体实现 思路: H5 的 <audio> 标签是由浏览器负责实现默认样式的.所以不同 ...
- linux系统命令学习系列-例行任务管理at命令
先来复习一下上节内容: 切换用户身份命令su 以root身份执行操作命令sudo 作业:给user1配置sudo权限,不用密码,可执行useradd命令 在/etc/sudoers文件中添加如下配置项 ...
- maven安装、配置
maven的安装和配置 1.将maven解压到自定义文件夹下.例如解压到如下目录(解压目录最好不要有中文字): 2:配置环境变量:一定要注意要用分号:与其他值隔开 3.在cmd中测试,验证是否安装成 ...
- SpringBoot应用的启动方式
一:IDE 运行Application这个类的main方法 二:在SpringBoot的应用的根目录下运行mvn spring-boot:run 三:使用mvn install 生成jar后运行 先到 ...
- 云+社区技术沙龙:Kafka meetup 深圳站报名开启
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 如果说 2018 年是技术大爆炸年,那么 Apache Kafka 绝对是其中闪亮的新星. 自Kafka 从首发之日起,已经走过了快八个年头 ...