BZOJ 4503: 两个串 [FFT]
4503: 两个串
题意:兔子们在玩两个串的游戏。给定两个只含小写字母的字符串S和T,兔子们想知道T在S中出现了几次,
分别在哪些位置出现。注意T中可能有“?”字符,这个字符可以匹配任何字符。
为什么智障游戏总要让兔子来玩
受到上题影响,直接每个字符算一遍最后加上?的个数,26倍常数完美TLE
上一题是因为母串的每个位置可以匹配几种字符我们才那么做,对于只有相等匹配和万能匹配的问题不用那样做
我们可以直接构造这样一个卷积,
\(a_i=s_i\)
\(b_i=t_i,\ t_i \neq ?\)
\(b_i=0,\ t_i=?\)
\]
这样的话能匹配当且仅当相等或者模式串为?
化简后反转模式串就是两个卷积+一个函数卷1加起来的形式
注意:最后一个是\(b_i^3\),如果强行放到fft里计算必须要卷上一个常数函数\(1\)才行,否则直接fft算完后加上他就可以了,他对每一项是相等的
一开始反转模式串的时候直接用t[m-1+i]了wa了好久...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=(1<<18)+5;
const double PI=acos(-1);
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
struct meow{
double x, y;
meow(double a=0, double b=0):x(a), y(b){}
};
meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
meow operator *(meow a, meow b) {return meow(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd;
namespace FFT{
int n, rev[N];
void ini(int lim) {
n=1; int k=0;
while(n<lim) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
}
void dft(cd *a, int flag) {
for(int i=0; i<n; i++) if(i<rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m=l>>1;
cd wn = meow(cos(2*PI/l), flag*sin(2*PI/l));
for(cd *p=a; p!=a+n; p+=l) {
cd w(1, 0);
for(int k=0; k<m; k++) {
cd t = w*p[k+m];
p[k+m] = p[k] - t;
p[k] = p[k] + t;
w=w*wn;
}
}
}
if(flag==-1) for(int i=0; i<n; i++) a[i].x/=n;
}
}using FFT::dft; using FFT::ini;
int n, m, lim;
cd a[N], b[N], a2[N], b2[N], c[N]; double b3;
char s[N], t[N];
int ans, li[N];
int main() {
freopen("pn","r",stdin);
scanf("%s%s",s,t);
n=strlen(s); m=strlen(t); lim=n+m-1; ini(lim);
for(int i=0; i<n; i++) s[i]=s[i]-'a'+1;
for(int i=0; i<m; i++) t[i]= t[i]=='?' ? 0 : t[i]-'a'+1;
for(int i=0; i<n; i++) a[i].x = 2*s[i], a2[i].x = s[i]*s[i];
for(int i=0; i<m; i++) {
int p=m-1-i;
b[p].x = t[i], b2[p].x = t[i]*t[i], b3 += t[i]*t[i]*t[i];
}
dft(a, 1); dft(a2, 1); dft(b, 1); dft(b2, 1);
for(int i=0; i<FFT::n; i++) c[i] = a2[i]*b[i] - a[i]*b2[i];
dft(c, -1);
for(int i=0; i<=n-m; i++) if(floor(c[m-1+i].x+b3+0.5)==0) li[++ans]=i;
printf("%d\n",ans);
for(int i=1; i<=ans; i++) printf("%d\n",li[i]);
}
BZOJ 4503: 两个串 [FFT]的更多相关文章
- BZOJ.4503.两个串(FFT/bitset)
题目链接 \(Description\) 给定两个字符串S和T,求T在S中出现了几次,以及分别在哪些位置出现.T中可能有'?'字符,这个字符可以匹配任何字符. \(|S|,|T|\leq 10^5\) ...
- bzoj 4503 两个串——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503 翻转T,就变成卷积.要想想怎么判断. 因为卷积是乘积求和,又想到相等的话相减为0,所以 ...
- bzoj 4503 两个串 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503 推式子即可: 不知怎的调了那么久,应该是很清晰的. 代码如下: #include< ...
- BZOJ 4503 两个串 ——FFT
[题目分析] 定义两个字符之间的距离为 (ai-bi)^2*ai*bi 如果能够匹配,从i到i+m的位置的和一定为0 但这和暴力没有什么区别. 发现把b字符串反过来就可以卷积用FFT了. 听说KMP+ ...
- bzoj 4503 两个串
Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有“?”字符,这个字符可以匹配任何字符. Input 两行两个字 ...
- 【刷题】BZOJ 4503 两个串
Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有"?"字符,这个字符可以匹配任何字符. I ...
- BZOJ 4503 两个串(FFT)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4503 [题目大意] 给出S串和T串,计算T在S中出现次数,T中有通配符'?'. [题解 ...
- bzoj 4503 两个串 快速傅里叶变换FFT
题目大意: 给定两个\((length \leq 10^5)\)的字符串,问第二个串在第一个串中出现了多少次.并且第二个串中含有单字符通配符. 题解: 首先我们从kmp的角度去考虑 这道题从字符串数据 ...
- bzoj 4503: 两个串【脑洞+FFT】
真实脑洞题 因为通配符所以导致t串实际有指数级别个,任何字符串相关算法都没有用 考虑一个新的匹配方法:设a串(模板串)长为n,从m串的i位置开始匹配:\( \sum_{i=0}^{n-1}(a[j]- ...
随机推荐
- android狼人杀源码,桌面源码,猎豹快切源码
Android精选源码 android实现狼人杀app源码 android实现精心打造的Android基础框架源码 android热门电影的客户端源码 android 实现桌面的Launcher源码 ...
- Effective Java 第三版——23. 优先使用类层次而不是标签类
Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...
- 初识LINUX之常见命令
玩过Linux的人都会知道,Linux中的命令的确是非常多,但是玩过Linux的人也从来不会因为Linux的命令如此之多而烦恼,因为我们只需要掌握我们最常用的命令就可以了.当然你也可以在使用时去找一下 ...
- 在tomcat中布置项目的介绍(一)
一:为什么要在tomcat中单独布置项目 因为上线到服务器上需要项目的功能之间彼此独立,这个以后我会细说. 二:简单的步骤一个都不能少 conf文件里的配置文件需要配置好:logback.xml文件会 ...
- 将自己的代码托管到github上
这几天一直在做一个爬虫的小demo,代码基本写的差不多了,想着如何把他放在一个地方,如是乎注册了一个github账号,开始了自己的git之旅. 首先是下载git,这个我就不多说啦!到处都有推荐看看廖雪 ...
- Lucene.net(4.8.0) 学习问题记录四: IndexWriter 索引的优化以及思考
前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...
- RocketMQ环境搭建(双master模式)
介绍: 多Master模式,一个集群无Slave,全是Master,例如2个Master或者3个Master. 优点:配置简单,单个Master宕机或重启维护对应用无影响,在磁盘配置为RAID10时, ...
- mysql-关联查询
MySQL关联查询的三种写法: SELECT * FROM film JOIN film_actor ON (film.film_id = film_actor.film_id);SELECT * F ...
- 深入浅出讲解:php的socket通信[转]
对TCP/IP.UDP.Socket编程这些词你不会很陌生吧?随着网络技术的发展,这些词充斥着我们的耳朵.那么我想问: 1. 什么是TCP/IP.UDP?2. Sock ...
- Linux上常用软件安装和总结
Linux总结: 以前只顾着撸码,Linux这些一般都是运维玩的,然后也没怎么折腾过,每次上线也都只是发布下,最多也就是启停服务器.最近闲来无事就玩了玩Linux,还挺好的. 这里做一个总结来结束Li ...