Description

对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m。例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6;而且是最小的有4个因子的整数。

Input

n(1≤n≤50000)

Output

m

Sample Input

4

Sample Output

6

题解

这道题和[HAOI 2007]反素数ant解题思路和方法简直一毛一样...

同样我们引入这个公式:

对任一整数$a>1$,有$a={p_1}^{a_1}{p_2}^{a_2}…{p_n}^{a_n}$,其中$p_1<p_2<…<p_n$均为素数,而$a_1$,$a_2$…,$a_n$是正整数。

$a$的正约数个数为:$(1+a_1)(1+a_2)…(1+a_n)$

同理,我们也是求有$n$个因数的最小整数。

我们最坏的情况所有质数只取$1$个,由于$15<log_{2}50000<16$

所以只要取前$16$个质数即可,

其余都和之前那题一样...

搜的时候为了保存最优值,因为数据大会爆$long$ $long$我们考虑用指数幂的形式保存,带一个数组保存取质数的个数。

同时注意每层循环枚举取质数的个数时候,因为不合法的情况很多,可以只枚举$\sqrt n$次,然后用枚举的值算出对应的另外一个值。

 #include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const double INF=1e100;
const int pri[]={,,,,,,,,,,,,,,,,}; int n;
double lg[],mm=INF;
int ans[],tmp[]; void Dfs(double e,int y,int cen)
{
if (e>=mm) return;
if (y==)
{
mm=e;
memcpy(ans,tmp,sizeof(ans));
return;
}
if (cen>) return;
for (int i=;(i+)*(i+)<=y;i++) if (!(y%(i+)))
{
if (i!=)
{
tmp[cen]=i;
Dfs(e+lg[cen]*i,y/(i+),cen+);
tmp[cen]=;
}
if ((i+)*(i+)!=y)
{
tmp[cen]=y/(i+)-;
Dfs(e+lg[cen]*(y/(i+)-),i+,cen+);
tmp[cen]=;
}
}
}
void print()
{
const int MOD=1e4;
int a[],maxn=;
a[]=;
for (int i=;i<=;i++)
{
for (int j=;j<=ans[i];j++)
{
for (int k=;k<=maxn;k++) a[k]*=pri[i];
for (int k=;k<=maxn;k++) a[k+]+=a[k]/MOD,a[k]%=MOD;
if (a[maxn+]) maxn++;
}
}
printf("%d",a[maxn]);
for (int i=maxn-;i>=;i--) printf("%04d",a[i]);
printf("\n");
} int main()
{
scanf("%d",&n);
for (int i=;i<=;i++) lg[i]=log(pri[i]);
Dfs(,n,);
print();
return ;
}

[HNOI 2001]求正整数的更多相关文章

  1. 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数

    // 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数 // 思路: // http://blog.csdn.net/huzecong/article/details/847868 ...

  2. 求正整数n所有可能的和式的组合(如;4=1+1+1+1、1+1+2、1+3、2+1+1、2+2

    作者:张小二 nyoj90 ,可以使用递归的方式直接计算个数,也可以通过把满足的个数求出来计数,因为在juLy博客上看到整数划分,所以重写了这个代码,就是列出所m的可能性,提交后正确.acmer的入门 ...

  3. BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )

    15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------ ...

  4. 实验一:实现求正整数1-N之间所有质数的功能,并进行测试。

    实验一 Java开发环境的熟悉(Linux + Eclipse) 实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用Eclipse 编辑.编译.运行.调试Java程序. 命令行下的程序开 ...

  5. bzoj1225 [HNOI2001] 求正整数

    1225: [HNOI2001] 求正整数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 313[Submit][Statu ...

  6. luogu P1128 [HNOI2001]求正整数 dp 高精度

    LINK:求正整数 比较难的高精度. 容易想到贪心不过这个贪心的策略大多都能找到反例. 考虑dp. f[i][j]表示前i个质数此时n的值为j的最小的答案. 利用高精度dp不太现实.就算上FFT也会T ...

  7. 求正整数2和n之间的完全数

    [题目描述] 求正整数22和nn之间的完全数(一行一个数). 完全数:因子之和等于它本身的自然数,如6=1+2+36=1+2+3 [输入] 输入n(n≤5000)n(n≤5000). [输出] 一行一 ...

  8. 【BZOJ】1225: [HNOI2001] 求正整数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1225 题意:给一个数n,求一个最小的有n个约数的正整数.(n<=50000) #include ...

  9. BZOJ-1225-[HNOI2001] 求正整数

    Description 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m.例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. Input n ...

随机推荐

  1. Sublime Text3下使用Python,REPL的安装与快捷键设置方法

    前提条件:连接外网   1.安装管理插件(CTRL+SHIFT+P),找到Package Control:install package一项,回车后继续选择SublimeREPL插件,进行安装:   ...

  2. APP案例分析

    产品 蓝叠安卓模拟器 选择理由     看了一眼桌面,就这个比较有意思.现在很多人喜欢玩手游,经常喜欢开个小号搞事情.这时候身边又没有多余的手机,怎么办?安卓模拟器下一个.手机屏幕太小玩起来没意思怎么 ...

  3. 201621123043《java程序设计》第五周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 接口. Comparable接口 .Comparator接口.compareTo. 1.2 尝试使用思维导图将这些关键词组织起来 ...

  4. 20145237 实验一 逆向与Bof基础

    20145237 实验一 逆向与Bof基础 1.直接修改程序机器指令,改变程序执行流程 此次实验是下载老师传给我们的一个名为pwn1的文件. 首先,用 objdump -d pwn1 对pwn1进行反 ...

  5. Linux进程间通信--信号量

    信号量绝对不同于信号,一定要分清,关于信号,上一篇博客中已经说过,如有疑问,请移驾! 信号量 一.是什么   信号量的本质是一种数据操作锁,它本身不具有数据交换的功能,而是通过控制其他的通信资源(文件 ...

  6. zookeeper入门系列:概述

    zookeeper可谓是目前使用最广泛的分布式组件了.其功能和职责单一,但却非常重要. 在现今这个年代,介绍zookeeper的书和文章可谓多如牛毛,本人不才,试图通过自己的理解来介绍zookeepe ...

  7. emqtt 试用(九)ssl认证 - 客户端 mqttfx 验证

    一.代码生成证书 1.安装openssl,配置path变量 安装文件:Win64OpenSSL-1_1_0f.exe 安装openssl:C:\OpenSSL-Win64 配置path变量:C:\Op ...

  8. mongodb 索引的基本命令

    mongodb的索引: 在数据量超大的时候,能够极大的增快查询速率,但是会降低更新效率.建立索引: db.集合.ensureIndex({属性:1}) //1代表升序 -1代表降序 db.集合.ens ...

  9. Python之面向对象一

    引子 小游戏:人狗大战 角色:人和狗 角色属性:姓名,血量,战斗力和性别(种类) 技能:打/咬 用函数实现人打狗和狗咬人的情形 def Dog(name,blood,aggr,kind): dog = ...

  10. RxJava系列4(过滤操作符)

    RxJava系列1(简介) RxJava系列2(基本概念及使用介绍) RxJava系列3(转换操作符) RxJava系列4(过滤操作符) RxJava系列5(组合操作符) RxJava系列6(从微观角 ...