Description

您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本):

  1. 插入x数

  2. 删除x数(若有多个相同的数,因只删除一个,如果没有请忽略该操作)

  3. 查询x数的排名(排名定义为比当前数小的数的个数+1。若有多个相同的数,因输出最小的排名)

  4. 查询排名为x的数

  5. 求x的前驱(前驱定义为小于x,且最大的数,如不存在输出-2147483647)

  6. 求x的后继(后继定义为大于x,且最小的数,如不存在输出2147483647)

和原本平衡树不同的一点是,每一次的任何操作都是基于某一个历史版本,同时生成一个新的版本。(操作3, 4, 5, 6即保持原版本无变化)

每个版本的编号即为操作的序号(版本0即为初始状态,空树)

Input

第一行包含一个正整数N,表示操作的总数。

接下来每行包含三个正整数,第 $i$ 行记为 $v_i, opt_i, x_i$。

$v_i$表示基于的过去版本号( $ 0 \leq v_i < i$ ),$opt_i$ 表示操作的序号( $ 1 \leq opt \leq 6 $ ), $x_i$ 表示参与操作的数值

Output

每行包含一个正整数,依次为各个3,4,5,6操作所对应的答案

Sample Input

10
0 1 9
1 1 3
1 1 10
2 4 2
3 3 9
3 1 2
6 4 1
6 2 9
8 6 3
4 5 8

Sample Output

9
1
2
10
3

Hint

数据范围:

对于10%的数据满足: $ 1 \leq n \leq 10 $

对于30%的数据满足: $ 1 \leq n \leq 2\cdot {10}^2 $

对于50%的数据满足: $ 1 \leq n \leq 3\cdot {10}^3 $

对于80%的数据满足: $ 1 \leq n \leq {10}^5 $

对于90%的数据满足: $ 1 \leq n \leq 2\cdot {10}^5 $

对于100%的数据满足: $ 1 \leq n \leq 5\cdot {10}^5 $ , $-{10}^9 \leq x_i \leq {10}^9$

经实测,正常常数的可持久化平衡树均可通过,请各位放心

样例说明:

共10次操作,11个版本,各版本的状况依次是:

  1. $[]$

  2. $[9]$

  3. $[3, 9]$

  4. $[9, 10]$

  5. $[3, 9]$

  6. $[9, 10]$

  7. $[2, 9, 10]$

  8. $[2, 9, 10]$

  9. $[2, 10]$

  10. $[2, 10]$

  11. $[3, 9]$

题解

用 $fhq\_treap$ 来实现可持久化。

对于新建的版本,需要更新的点只有 $split$ 和 $merge$ 经过的点。

 //It is made by Awson on 2018.1.3
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define LD long double
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = 5e5;
const int M = N*;
const int INF = ~0u>>; struct fhq_Treap {
int root[N+], ch[M+][], key[M+], lev[M+], size[M+], tot;
queue<int>mem;
int newnode(int keyy) {
int o;
if (!mem.empty()) o = mem.front(), mem.pop();
else o = ++tot;
ch[o][] = ch[o][] = , key[o] = keyy, lev[o] = rand(), size[o] = ;
return o;
}
int cpynode(int r) {
int o;
if (!mem.empty()) o = mem.front(), mem.pop();
else o = ++tot;
ch[o][] = ch[r][], ch[o][] = ch[r][], key[o] = key[r], lev[o] = lev[r], size[o] = size[r];
return o;
}
void pushup(int o) {
size[o] = size[ch[o][]]+size[ch[o][]]+;
}
void split(int o, int keyy, int &x, int &y) {
if (!o) x = y = ;
else {
if (key[o] <= keyy) {
x = cpynode(o), split(ch[x][], keyy, ch[x][], y);
pushup(x);
}else {
y = cpynode(o), split(ch[y][], keyy, x, ch[y][]);
pushup(y);
}
}
}
int merge(int x, int y) {
if (!x || !y) return x+y;
if (lev[x] < lev[y]) {
int r = cpynode(x);
ch[r][] = merge(ch[r][], y);
pushup(r); return r;
}else {
int r = cpynode(y);
ch[r][] = merge(x, ch[r][]);
pushup(r); return r;
}
}
void insert(int &o, int keyy) {
int r1, r2;
split(o, keyy, r1, r2);
o = merge(merge(r1, newnode(keyy)), r2);
}
void delet(int &o, int keyy) {
int r1, r2, r3;
split(o, keyy-, r1, r2);
split(r2, keyy, r2, r3);
if (r2) mem.push(r2);
r2 = merge(ch[r2][], ch[r2][]);
o = merge(merge(r1, r2), r3);
}
int rank(int &o, int keyy) {
int r1, r2;
split(o, keyy-, r1, r2);
int ans = size[r1]+;
o = merge(r1, r2);
return ans;
}
int get_num(int o, int rank) {
if (rank == size[ch[o][]]+) return key[o];
if (size[ch[o][]] >= rank) return get_num(ch[o][], rank);
return get_num(ch[o][], rank-(size[ch[o][]]+));
}
int get_pre(int &o, int keyy) {
int r1, r2;
split(o, keyy-, r1, r2);
int r = r1;
while (ch[r][]) r = ch[r][];
int ans = key[r];
o = merge(r1, r2);
return ans;
}
int get_nex(int &o, int keyy) {
int r1, r2;
split(o, keyy, r1, r2);
int r = r2;
while (ch[r][]) r = ch[r][];
int ans = key[r];
o = merge(r1, r2);
return ans;
}
}T;
int n, v, opt, x; void work() {
srand(time());
T.insert(T.root[], -INF);
T.insert(T.root[], INF);
scanf("%d", &n);
for (int i = ; i <= n; i++) {
scanf("%d%d%d", &v, &opt, &x);
T.root[i] = T.root[v];
if (opt == ) T.insert(T.root[i], x);
else if (opt == ) T.delet(T.root[i], x);
else if (opt == ) printf("%d\n", T.rank(T.root[i], x)-);
else if (opt == ) printf("%d\n", T.get_num(T.root[i], x+));
else if (opt == ) printf("%d\n", T.get_pre(T.root[i], x));
else printf("%d\n", T.get_nex(T.root[i], x));
}
}
int main() {
work();
return ;
}

[Luogu 3835]【模板】可持久化平衡树的更多相关文章

  1. 洛谷.3835.[模板]可持久化平衡树(fhq treap)

    题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...

  2. luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)

    luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include< ...

  3. luoguP3835 [模板]可持久化平衡树

    https://www.luogu.org/problemnew/show/P3835 因为博主精力和实力有限,学不懂 fhq treap 了,因此只介绍 leafy tree 解法 leafy tr ...

  4. 2021.07.02 P1383 高级打字机题解(可持久化平衡树)

    2021.07.02 P1383 高级打字机题解(可持久化平衡树) 分析: 从可以不断撤销并且查询不算撤销这一骚操作可以肯定这是要咱建一棵可持久化的树(我也只会建可持久化的树,当然,还有可持久化并查集 ...

  5. Luogu P3835 【模板】可持久化平衡树(fhq Treap)

    P3835 [模板]可持久化平衡树 题意 题目背景 本题为题目普通平衡树的可持久化加强版. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本 ...

  6. [luogu P3369]【模板】普通平衡树(Treap/SBT)

    [luogu P3369][模板]普通平衡树(Treap/SBT) 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 插入x数 删除x数(若有多个相同的数,因只删 ...

  7. 数组splay ------ luogu P3369 【模板】普通平衡树(Treap/SBT)

    二次联通门 : luogu P3369 [模板]普通平衡树(Treap/SBT) #include <cstdio> #define Max 100005 #define Inline _ ...

  8. 替罪羊树 ------ luogu P3369 【模板】普通平衡树(Treap/SBT)

    二次联通门 : luogu P3369 [模板]普通平衡树(Treap/SBT) 闲的没事,把各种平衡树都写写 比较比较... 下面是替罪羊树 #include <cstdio> #inc ...

  9. 红黑树 ------ luogu P3369 【模板】普通平衡树(Treap/SBT)

    二次联通门 : luogu P3369 [模板]普通平衡树(Treap/SBT) 近几天闲来无事...就把各种平衡树都写了一下... 下面是红黑树(Red Black Tree) 喜闻乐见拿到了luo ...

随机推荐

  1. 张旭升20162329 2006-2007-2 《Java程序设计》第一周学习总结

    20162329 2006-2007-2 <Java程序设计>第一周学习总结 教材学习内容总结 通过打书上的代码熟悉了Java编程的基本过程 教材学习中的问题和解决过程 1.因为我的虚拟机 ...

  2. 下载文件downloadFile

    public static void downLoadFile(InputStream inStream, String fileName) { if (StringUtils.isBlank(fil ...

  3. 【译】Gradle 的依赖关系处理不当,可能导致你编译异常

    文章 | Ashesh Bharadwaj 翻译 | 承香墨影 授权 承香墨影 翻译.编辑并发布 在 Android Studio 中,Gradle 构建过程对于开发者来说,很大程度上是抽象的.作为一 ...

  4. 构建微服务开发环境4————安装Docker及下载常用镜像

    [内容指引] 下载Docker: Mac下安装Docker: Windows下安装Docker; 下载常用docker镜像. 一.下载Docker 1.Mac适用Docker下载地址:https:// ...

  5. day-2 如何搭建一个github代码库

    最近在听尤瓦尔·赫拉利代写的两本书<人类简史>和<未来简史>两本书评,一部描述人类从哪里来,一部描述人类将往哪里去,书中阐述以前我们经历的饥饿.疾病和战争已经渐渐逝去,未来我们 ...

  6. [JCIP笔记] (二)当我们谈线程安全时,我们在谈论什么

    总听组里几个大神说起线程安全问题.本来对"线程安全"这个定义拿捏得就不是很准,更令人困惑的是,大神们用这个词指代的对象不仅抽象而且千变万化.比如,我们的架构师昨天说: " ...

  7. Java面试题(二)

    系统整理了一下有关Java的面试题,包括基础篇,javaweb篇,框架篇,数据库篇,多线程篇,并发篇,算法篇等等,陆续更新中.其他方面如前端后端等等的面试题也在整理中,都会有的. 注:文末有福利! 1 ...

  8. 微信开发之SVN提交代码与FTP同步到apache的根目录

    SVN是协同开发的,版本控制器,就是几个人同时开发,可以提交代码到SVN服务器,这样就可以协同开发,一般是早上上班首先更新下代码,然后自己修改代码 工作一天之后,修改代码之后,下班之前,更新代码,然后 ...

  9. SQL Server元数据损坏(metadata corruption)修复

    在升级一个SQL Server 2000的数据库时,遇到了一致性错误,其中有几个错误是元数据损坏(metadata corruption),特意研究了一下这个案例,因为以前也零零散散的遇到过一些一致性 ...

  10. sql优化基础篇

    优化的步骤: 0.先sql运行看看是否真的很慢,注意设置SQL_NO_CACHE 1.where条件单表查,锁定最小返回记录表.这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始 ...