0.引子

每一个讲中国剩余定理的人,都会从孙子的一道例题讲起

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

1.中国剩余定理

引子里的例题实际上是求一个最小的x满足

关键是,其中r1,r2,……,rk互质

这种问题都有多解,每一个解都为最小的解加上若干个lcm(r1,r2,...,rk),这个不用我证了吧(-_-||)

解决这个问题的方法是构造法,

先构造k个数

满足

这样就保证 ,但是由于 bi 乘了除 ri 以外所有 r,所以bi模其它的 r 都为 0,

再把所有 bi 加起来,得到的数就满足方程了。

例题

UVA756 Biorhythms

HDU1370 Biorhythms

非常裸的一道剩余定理的题,但是某些OJ题面出了问题,以至于让同学们白白wa了很多遍

首先是luogu的翻译,并不是“保证 x 不超过 21252”,而是“保证 x-d 不超过 21252”

然后是(屑)HDU的数据,一开始得输入一个数后才能开始输入,看样例应该就知道了

题目把r1~r3都给出来了,相当于可以直接手算得出

直接代入算b

最后判断x是否<=d,是就+=21252

CODE

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<algorithm>
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x)&(x))
//#define int LL
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + (s - '0');s = getchar();}
return x * f;
}
int main() {
// read(); //HDU的把这句加上
int p,e,i,d,lc = 21252,ad1 = 5544,ad2 = 14421,ad3 = 1288;
int Case = 0;
while(scanf("%d%d%d%d",&p,&e,&i,&d) == 4) {
if(p == -1 || e == -1 || i == -1 || d == -1) break;
int x = (p *1ll* ad1 + e *1ll* ad2 + i *1ll* ad3) % lc;
if(x <= d) x += lc;
printf("Case %d: the next triple peak occurs in %d days.\n",++ Case,x - d);
}
return 0;
}

2.扩展中国剩余定理

这个就比普通中国剩余定理好用多了

还是求这个方程

但是不保证互质了

既然不保证互质,他们就有最大公约数

我们依次合并两个方程

把它变一下,设k、p,满足

即 

移个项:

于是它就变成了“ax+by=c”的形式,可以用扩展欧几里得求出特解k(若无解就整个方程无解了)

它的任意解都满足 

由于x等于通解中的一个

所以

成功合并成一个方程!

最后剩下一个方程时,最小的解就为式子右边的值

例题

POJ2891 Strange Way to Express Integers

这题是扩展中国剩余定理的板题,不用我讲了吧(众所周知,板题≠水题)

CODE

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<algorithm>
#define MAXN 2000005
#define MAXM 3000005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x)&(x))
#define int LL
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + (s - '0');s = getchar();}
return x * f;
}
const int jzm = 1000000007;
int n,m,i,j,s,o,k;
LL exgcd(LL a,LL b,LL &x,LL &y) {
if(b == 0) {
x = 1;y = 0;
return a;
}
LL r = exgcd(b,a%b,y,x);
y -= x*(a/b);
return r;
}
signed main() {
while(scanf("%lld",&n) == 1) {
LL r1 = read(),a1 = read();
bool flag = 1;
for(int i = 2;i <= n;i ++) {
LL r2 = read(),a2 = read(),k,p;
if(a2 > a1) swap(a1,a2),swap(r1,r2);
if(!flag) continue;
LL gc = exgcd(r1,r2,k,p),lc = r1 / gc * r2;
if((a1-a2) % gc) {
flag = 0;continue;
}
LL tym = r2/gc;
((k = (k * (a1-a2) / gc) % tym) += tym) %= tym;
a1 = (a1 + lc - k * r1 % lc) % lc;
r1 = lc;
}
if(!flag) printf("-1\n");
else printf("%lld\n",a1 == 0 ? r1:a1);
}
return 0;
}

中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)的更多相关文章

  1. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  2. [poj2891]Strange Way to Express Integers(扩展中国剩余定理)

    题意:求解一般模线性同余方程组 解题关键:扩展中国剩余定理求解.两两求解. $\left\{ {\begin{array}{*{20}{l}}{x = {r_1}\,\bmod \,{m_1}}\\{ ...

  3. POJ2891 Strange Way to Express Integers【扩展中国剩余定理】

    题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...

  4. POJ2891 Strange Way to Express Integers [中国剩余定理]

    不互质情况的模板题 注意多组数据不要一发现不合法就退出 #include <iostream> #include <cstdio> #include <cstring&g ...

  5. POJ-2891 Strange Way to Express Integers(拓展中国剩余定理)

    放一个写的不错的博客:https://www.cnblogs.com/zwfymqz/p/8425731.html POJ好像不能用__int128. #include <iostream> ...

  6. POJ2891 Strange Way to Express Integers (扩展欧几里德)

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia 题目大意 求解一组同余方程 x ≡ r1 (mod a1) x ≡ r2 (mod a2) x ≡ r ...

  7. POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x, ...

  8. 数论F - Strange Way to Express Integers(不互素的的中国剩余定理)

    F - Strange Way to Express Integers Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format: ...

  9. poj 2981 Strange Way to Express Integers (中国剩余定理不互质)

    http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 13 ...

随机推荐

  1. BUUCTF-文件中的秘密

    文件中的秘密 下载图片属性查看即可发现flag.这算是图片必须查看的几个地方.

  2. 强化学习-Windows安装gym、atari和box2d环境

    安装gym pip3 install gym pip3 install gym[accept-rom-license] 安装atari环境[可选] 下载安装VS build tools 如果出现 OS ...

  3. SAP BOM 笔记(本文仅作笔记使用,非原创)

    SAP各种BOM汇总--含义解释(简洁易懂)-转载(原文连接:http://blog.sina.com.cn/s/blog_b9137f430102xpam.html)感谢作者分享     订单BOM ...

  4. 记一次beego通过go get命令后找不到bee.exe的坑

    学习goweb开发,gin是个轻量级的框架.如果想要一个类如aspnetmvc帮我们搭建好了的goweb框架,beego值得去学习.否则gin下面需要动手构建好多代码.新手还是先学现成的节约时间成本. ...

  5. 聊聊Adapter模式

    今天我们聊一个最简单的设计模式,适配器Adapter.跟以往一样,我们还是从一个例子出发. 一个例子 最开始的结构 假设我们有个数据分析软件,其中包含了数据收集器和数据分析器,数据收集器基于XML格式 ...

  6. linux目录结构及定时任务

    1. Linux的根目录(最顶层的目录) windows系统有根目录:c盘的根目录就是c:\ d盘的根目录就是d:\ 每个盘(分区)都有自己的根目录 Linux系统, 也支持多个分区 Linux的分区 ...

  7. 基于NCF的多模块协同实例

    简介 这次给大家带来的内容是基于NCF的多模块协同实例 主要讲解的内容是NCF的模块Xncf之间相互调用,相互协作的能力 这里可以把Xncf比作乐高玩具,一个Xncf就是你拥有的乐高玩具的类型,比如你 ...

  8. 《Ranked List Loss for Deep Metric Learning》CVPR 2019

    Motivation: 深度度量学习的目标是学习一个嵌入空间来从数据点中捕捉语义信息.现有的成对或者三元组方法随着模型迭代过程会出现大量的平凡组导致收敛缓慢.针对这个问题,一些基于排序结构的损失取得了 ...

  9. 写出个灵活的系统竟然可以如此简单!小白也能写出高级的Java业务!

    一 最近正好公司里有个需求,一个短信业务接了多个第三方供应商,某些业务需要查询第三方供应商剩余的短信包数量去选择剩余量最多的渠道去批量发送.有些业务是指定了某个短信供应商,有些场景需要根据业务的值去动 ...

  10. C++ delete后的指针在不同编译器下的状态差异

    今天看到小伙伴分享的一个问题,小伙伴用的MSVC2019编译器,在对delete后的指针进行取值操作时触发了访问冲突. #include<iostream> using namespace ...