题意: 有一根长为 \(1\) 的巧克力,已经被切了 \(m-1\) 刀被分成 \(m\) 分,接下来每次在整根长度为 \(1\) 的巧克力上均匀随机一个点切一刀,求每一小段巧克力长度均小于一个给定值 \(K\) 需要的期望次数。

引理:Irwin-Hall 分布:对于 \(n\) 个在 \([0,1]\) 内均匀分布的实数随机变量,它们的和不超过一个实数 \(z\) 的概率为:

\[I_n(z)=\sum\limits_{k=0}^{\lfloor z\rfloor} (-1)^k\binom{n}{k}\frac{(z-k)^n}{n!}
\]

首先令 \(f_L(n)\) 表示将长度为 \(L\) 的巧克力切 \(n\) 刀已经合法的概率。

\[\begin{aligned}
f_L(n)&=n!\int\limits_{x_i\in[0,K],\sum_{i=1}^{n+1} x_i=L}\prod \mathrm{d}\frac{x_i}{L}\\
&=n!\int\limits_{x_i\in[0,K],\sum_{i=1}^{n} x_i\in[L-K,L]}\prod \mathrm{d}\frac{x_i}{L}\\
&=n!(\frac{K}{L})^n\int\limits_{x_i\in[0,1],\sum_{i=1}^{n} x_i\in[\frac{L-K}{K},\frac{L}{K}]}\prod \mathrm{d}x_i\\
&=n!(\frac{K}{L})^n(I_{n}(\frac{L}{K})-I_{n}(\frac{L}{K}-1))\\
&=n!w^n\Big(\sum\limits_{k=0}^{\lfloor \frac{1}{w}\rfloor} (-1)^k\binom{n}{k}\frac{(\frac{1}{w}-k)^n}{n!}-\sum\limits_{k=0}^{\lfloor \frac{1}{w}\rfloor-1} (-1)^k\binom{n}{k}\frac{(\frac{1}{w}-1-k)^n}{n!}\Big)\texttt{ (Let }w=\frac{K}{L}\texttt{)}\\
&=n!\Big(\sum\limits_{k=0}^{\lfloor \frac{1}{w}\rfloor} (-1)^k\binom{n}{k}\frac{(1-wk)^n}{n!}-\sum\limits_{k=0}^{\lfloor \frac{1}{w}\rfloor-1} (-1)^k\binom{n}{k}\frac{(1-w(k+1))^n}{n!}\Big)\\
&=\sum\limits_{k=1}^{{\lfloor \frac{1}{w}\rfloor}}(-1)^k(\binom{n}{k}+\binom{n}{k-1})(1-wk)^n\\
&=\sum\limits_{k=0}^{{\lfloor \frac{1}{w}\rfloor}}(-1)^k\binom{n+1}{k}(1-wk)^n\\
&=\sum\limits_{k=0}^{{\lfloor \frac{L}{K}\rfloor}}(-1)^k\binom{n+1}{k}(\frac{L-Kk}{L})^n\\
\end{aligned}
\]

卷起来,可以得到

设 \(f(n)\) 表示总共切 \(n\) 刀合法的概率,\(F(z)\) 为 \(f(n)\) 的 EGF;令 \(F_L(z)\) 为 \(f_L(n)\) 的 EGF,那么有 \(F(n)=\prod_{i=1}^m F_{L_i}(z)\),且

\[\begin{aligned}
F_L(z)&=\sum\limits_{n\ge 0} \frac{1}{n!}\sum\limits_{k=0}^{{\lfloor \frac{L}{K}\rfloor}}(-1)^k\binom{n+1}{k}(\frac{L-Kk}{L}z)^n\\
&=\sum\limits_{k=0}^{{\lfloor \frac{L}{K}\rfloor}}(-1)^k\sum\limits_{n\ge 0} \frac{1}{n!}\binom{n+1}{k}(\frac{L-Kk}{L}z)^n\\
&=\sum\limits_{k=0}^{{\lfloor \frac{L}{K}\rfloor}}(-1)^k\sum\limits_{n\ge 0} \frac{n+1}{k!(n+1-k)!}(\frac{L-Kk}{L}z)^n\\
&=\sum\limits_{k=0}^{{\lfloor \frac{L}{K}\rfloor}}(-1)^k\sum\limits_{n\ge 0} \frac{k+(n+1-k)}{k!(n+1-k)!}(\frac{L-Kk}{L}z)^n\\
&=\sum\limits_{k=0}^{{\lfloor \frac{L}{K}\rfloor}}(-1)^k\sum\limits_{n\ge 0} (\frac{1}{(k-1)!(n+1-k)!}+\frac{1}{k!(n-k)!})y_k^n\texttt{ (Let }y_k=\frac{L-Kk}{L}z\texttt{)}\\
&=\sum\limits_{k=0}^{{\lfloor \frac{L}{K}\rfloor}}(-1)^k(\frac{y_k^{k-1}}{(k-1)!}+\frac{y_k^{k}}{k!})\mathrm{e}^{y_k} \\
&=\sum\limits_{k=0}^{{\lfloor \frac{L}{K}\rfloor}}(-1)^k(\frac{1}{(k-1)!}(\frac{L-Kk}{L})^{k-1}z^{k-1}+\frac{1}{k!}(\frac{L-Kk}{L})^kz^k)\mathrm{e}^{\frac{L-Kk}{L}z} \\
&=\mathrm{e}^z\sum\limits_{k=0}^{\lfloor \frac{L}{K}\rfloor}\sum\limits_{r=0}^{1} a_{k,r}z^{k-r}\mathrm{e}^{\frac{K}{L}kz}
\end{aligned}
\]

其中 \(a_{k,0}=(-1)^k\frac{1}{k!}(\frac{L-Kk}{L})^k,a_{k,1}=(-1)^{k-1}\frac{1}{(k-1)!}(\frac{L-Kk}{L})^{k-1}\)。

于是将所有 \(F_{L_i}(z)\) 卷起来,可以得到

\[\begin{aligned}
F(z)&=\sum\limits_{k=0}^{\frac{L}{K}}\sum\limits_{r=0}^{n}a_{k,r}z^{k-r}\mathrm{e}^{(n+\frac{K}{L}k)z}\\
&=\sum\limits_{k}\sum\limits_{r}a_{k,r}z^{k-r}\sum\limits_{t\ge 0}\frac{(n+\frac{K}{L}k)^t}{t!}z^t\\
&=\sum\limits_{k}\sum\limits_{r}a_{k,r}\sum\limits_{t\ge 0}\frac{(n+\frac{K}{L}k)^t}{t!}z^{t+k-r}\\
\end{aligned}
\]

注意 \(F(z)\) 是 \(f(z)\) 的 EGF,我们想求的是 OGF,所以令

\[F^*(z)=\sum\limits_{k}\sum\limits_{r}a_{k,r}\sum\limits_{t\ge 0}\frac{(n+\frac{K}{L}k)^t}{t!}(t+k-r)!z^{t+k-r}
\]

则答案为

\[\begin{aligned}
F^*(1)&=\sum\limits_{k}\sum\limits_{r}a_{k,r}\sum\limits_{t\ge 0}\frac{(n+\frac{K}{L}k)^t}{t!}(t+k-r)!\\
&=\sum\limits_{k}\sum\limits_{r}a_{k,r}(k-r)!\sum\limits_{t\ge 0}\binom{t+k-r}{t}(n+\frac{K}{L}k)^t\\
&=\sum\limits_{k}\sum\limits_{r}\frac{a_{k,r}(k-r)!}{(1-n-\frac{K}{L}k)^{k-r+1}}
\end{aligned}
\]

即为所求。

CF1477F Nezzar and Chocolate Bars 题解的更多相关文章

  1. e-olymp Problem4196 Chocolate bars

    吐槽一下,这个OJ的题目真的是阅读理解题.代码非常短,就是题目难理解.心累. 传送门:点我 Chocolate bars It is hard to overestimate the role of ...

  2. 洛谷 P2983 [USACO10FEB]购买巧克力Chocolate Buying 题解

    P2983 [USACO10FEB]购买巧克力Chocolate Buying 题目描述 Bessie and the herd love chocolate so Farmer John is bu ...

  3. Codeforces Round #669 (Div. 2) C. Chocolate Bunny 题解(交互)

    题目链接 题目大意 有一个长度为n的全排列,你可以询问2n次,要你经过这个2n次的询问后,求出这个全排列 询问定义为:输入"? i j"输出\(p_{i} mod p_{j}\) ...

  4. Codeforces #698 (Div. 2) E. Nezzar and Binary String 题解

    中文题意: 给你两个长度为 \(n\) 的01串 \(s,f,\)有 \(q\) 次询问. 每次询问有区间 \([\ l,r\ ]\) ,如果 \([\ l,r\ ]\) 同时包含\(0\)和\(1\ ...

  5. Codeforces Beta Round #6 (Div. 2 Only) C. Alice, Bob and Chocolate 水题

    C. Alice, Bob and Chocolate 题目连接: http://codeforces.com/contest/6/problem/C Description Alice and Bo ...

  6. CF 1132A,1132B,1132C,1132D,1132E,1132F(Round 61 A,B,C,D,E,F)题解

    A.Regular bracket sequence A string is called bracket sequence if it does not contain any characters ...

  7. CF 633 F. The Chocolate Spree 树形dp

    题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...

  8. 【cf490】D. Chocolate(素数定理)

    http://codeforces.com/contest/490/problem/D 好神的一题,不会做.. 其实就是将所有的质因子找出来,满足: 最终的所有质因子的乘积相等 但是我们只能操作质因子 ...

  9. C - Alice, Bob and Chocolate(贪心)

    Problem description Alice and Bob like games. And now they are ready to start a new game. They have ...

  10. codeforces 490 D Chocolate

    题意:给出a1*b1和a2*b2两块巧克力,每次可以将这四个数中的随意一个数乘以1/2或者2/3,前提是要可以被2或者3整除,要求最小的次数让a1*b1=a2*b2,并求出这四个数最后的大小. 做法: ...

随机推荐

  1. Hadoop服务启动失败

    Hadoop服务启动失败今天启动Hadoop时,终端报了一个新的错误 ```bashStarting namenodes on [192.168.19.128]192.168.19.128: ssh: ...

  2. ORACLE 去重

    -----------------------------------------------------------------------------模拟数据------------------- ...

  3. 字符串练习2 最长抑或路径(01trie树)

    题目链接在这里:P4551 最长异或路径 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 是一道比较经典的问题,对于异或问题经常会使用01trie树来解决. 当然01trie树只是用 ...

  4. MybatisPlus 实现多表联合分页条件查询

    方式一:XML 有点繁琐,不太想用 mapper接口 public interface RoomMapper extends BaseMapper<Room> { List<Room ...

  5. Tensorflow Debug Record

    problem: InternalError (see above for traceback): Blas GEMM launch failed solve: sudo rm -rf ~/.nv/ ...

  6. el-admin角色编辑功能详解

    1.首先el-admin中的编辑和删除功能重新写成为了一个组件 data和permission都是父组件向子组件传参.data传的是当前表格中选中行的这条数据,permission是定义的一个对象. ...

  7. 如何利用Apifox通过签名计算及数据加解密进行用户认证接口测试?

    用户注册场景:输入签名数据signature,appId,13位时间戳timestamp,6位随机数nonce,merchantId(非必填,本次不填)的请求参数发送给服务器,服务器返回响应数值后,校 ...

  8. ABC291题解(D-G)

    ABC291 D - Flip Cards Solution: 考虑DP,定义状态\(F_{i,0}\)为第\(i\)张卡片正面朝上的方案数,\(F_{i,1}\)为第\(i\)张卡片背面朝上的方案数 ...

  9. Android Banner - ViewPager 02

    Android Banner - ViewPager 02 现在来给viewpager实现的banenr加上自动轮播 自动轮播的原理,使用handler的延迟消息来实现. 自动轮播实现如下内容 开始轮 ...

  10. kubernetes核心实战(六)--- ConfigMap

    8.ConfigMap 抽取应用配置,并且可以自动更新 创建配置文件 [root@k8s-master-node1 ~/yaml/test]# vim configmap.yaml [root@k8s ...