从零开始升级基于RuleBased的聊天机器人
这里记录从最基础的基于规则的聊天机器人,升级到基于逻辑的机器人,再升级到调用Google提供的API来让机器人能说、会听普通话。
最基本的完全基于规则式的问答:问什么就答什么,幼儿园水平。
import random
# 打招呼
greetings = ['hola', 'hello', 'hi', 'Hi', 'hey!','hey']
# 回复打招呼
random_greeting = random.choice(greetings)
# 对于“你怎么样?”这个问题的回复
question = ['How are you?','How are you doing?']
# “我很好”
responses = ['Okay',"I'm fine"]
# 随机选一个回
random_response = random.choice(responses)
# 机器人跑起来
while True:
userInput = input(">>> ")
if userInput in greetings:
print(random_greeting)
elif userInput in question:
print(random_response)
# 除非你说“拜拜”
elif userInput == 'bye':
break
else:
print("I did not understand what you said")
}
>>> hi
hey
>>> how are u
I did not understand what you said
>>> how are you
I did not understand what you said
>>> how are you?
I did not understand what you said
>>> How are you?
I'm fine
>>> bye
完全基于规则的问答会使召回率极低,因为难以列举的问法太多。
升级I: 现在,我们使用关键词匹配来升级我们的机器人。透过关键词来判断这句话的意图是什么(intents)。
from nltk import word_tokenize
import random
# 打招呼
greetings = ['hola', 'hello', 'hi', 'Hi', 'hey!','hey']
# 回复打招呼
random_greeting = random.choice(greetings)
# 对于“假期”的话题关键词
question = ['break','holiday','vacation','weekend']
# 回复假期话题
responses = ['It was nice! I went to Paris',"Sadly, I just stayed at home"]
# 随机选一个回
random_response = random.choice(responses)
# 机器人跑起来
while True:
userInput = input(">>> ")
# 清理一下输入,看看都有哪些词
cleaned_input = word_tokenize(userInput)
# 这里,我们比较一下关键词,确定他属于哪个问题
if not set(cleaned_input).isdisjoint(greetings):
print(random_greeting)
elif not set(cleaned_input).isdisjoint(question):
print(random_response)
# 除非你说“拜拜”
elif userInput == 'bye':
break
else:
print("I did not understand what you said")
>>> hi
hey
>>> how was your holiday?
It was nice! I went to Paris
>>> wow, amazing!
I did not understand what you said
>>> bye
大概能发现,这依旧是文字层面的“精准对应”。
现在主流的研究方向,是做到语义层面的对应。
比如,“肚子好饿哦”, “饭点到了”都应该表示的是要吃饭了的意思。
在这个层面就需要用到word vector之类的embedding方法,这些内容将是本博客不断更新的重头戏。
升级II : 建立一个简易的知识图谱来存储“知识体系”
# 建立一个基于目标行业的database
# 比如 这里我们用python自带的graph
graph = {'上海': ['苏州', '常州'],
'苏州': ['常州', '镇江'],
'常州': ['镇江'],
'镇江': ['常州'],
'盐城': ['南通'],
'南通': ['常州']}
# 明确如何找到从A到B的路径
def find_path(start, end, path=[]):
path = path + [start]
if start == end:
return path
if start not in graph:
return None
for node in graph[start]:
if node not in path:
newpath = find_path(node, end, path)
if newpath: return newpath
return None
print(find_path('上海', "镇江"))
['上海', '苏州', '常州', '镇江']
使用python版本的prolog:PyKE,它可以构建一种复杂的逻辑网络,让你方便提取信息,而不至于需要你亲手code所有的信息:
son_of(bruce, thomas, norma)
son_of(fred_a, thomas, norma)
son_of(tim, thomas, norma)
daughter_of(vicki, thomas, norma)
daughter_of(jill, thomas, norma)
升级III: 利用Google的API(需FQ)实现文字合成语音,以及语音识别。
from gtts import gTTS
import os
tts = gTTS(text='您好,我是您的私人助手,我叫小飞侠', lang='zh-tw')
tts.save("hello.mp3")
os.system("mpg321 hello.mp3")
同理,除了语音识别,调用Google的接口还可实现语音识别(注意:这里需要你的机器安装几个库 SpeechRecognition, PyAudio 和 PySpeech)
import speech_recognition as sr
from time import ctime
import time
import os
from gtts import gTTS
import sys
# 讲出来AI的话
def speak(audioString):
print(audioString)
tts = gTTS(text=audioString, lang='en')
tts.save("audio.mp3")
os.system("mpg321 audio.mp3")
# 录下来你讲的话
def recordAudio():
# 用麦克风记录下你的话
r = sr.Recognizer()
with sr.Microphone() as source:
audio = r.listen(source)
# 用Google API转化音频
data = ""
try:
data = r.recognize_google(audio)
print("You said: " + data)
except sr.UnknownValueError:
print("Google Speech Recognition could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Speech Recognition service; {0}".format(e))
return data
# 自带的对话技能(rules)
def jarvis():
while True:
data = recordAudio()
if "how are you" in data:
speak("I am fine")
if "what time is it" in data:
speak(ctime())
if "where is" in data:
data = data.split(" ")
location = data[2]
speak("Hold on Tony, I will show you where " + location + " is.")
os.system("open -a Safari https://www.google.com/maps/place/" + location + "/&")
if "bye" in data:
speak("bye bye")
break
# 初始化
time.sleep(2)
speak("Hi Tony, what can I do for you?")
# 跑起
jarvis()
Hi Tony, what can I do for you?
You said: how are you
I am fine
You said: what time is it now
Mon Oct 15 18:16:54 2018
You said: where is London
Hold on Tony, I will show you where London is.
You said: ok bye bye
bye bye
从零开始升级基于RuleBased的聊天机器人的更多相关文章
- python 小脚本升级-- 钉钉群聊天机器人
一则小脚本(工作中用) 在这篇文章中写的监控的脚本,发送监控的时候 是利用的邮箱,其实在实际,邮箱查收有着不方便性,于是乎升级, 我们工作中,经常用钉钉,那么如果要是能用到钉钉多好,这样我们的监控成功 ...
- 基于itchat定制聊天机器人
#coding=utf8import requestsimport itchat #key自己到图灵注册一个 KEY = '************************************** ...
- 基于PaddlePaddle的语义匹配模型DAM,让聊天机器人实现完美回复 |
来源商业新知网,原标题:让聊天机器人完美回复 | 基于PaddlePaddle的语义匹配模型DAM 语义匹配 语义匹配是NLP的一项重要应用.无论是问答系统.对话系统还是智能客服,都可以认为是问题和回 ...
- AI中台——智能聊天机器人平台的架构与应用(分享实录)
内容来源:宜信技术学院第3期技术沙龙-线上直播|AI中台——智能聊天机器人平台 主讲人:宜信科技中心AI中台团队负责人王东 导读:随着“中台”战略的提出,目前宜信中台建设在思想理念及架构设计上都已经取 ...
- 【自然语言处理篇】--Chatterbot聊天机器人
一.前述 ChatterBot是一个基于机器学习的聊天机器人引擎,构建在python上,主要特点是可以自可以从已有的对话中进行学(jiyi)习(pipei). 二.具体 1.安装 是的,安装超级简单, ...
- ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]
ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...
- 深度学习项目——基于循环神经网络(RNN)的智能聊天机器人系统
基于循环神经网络(RNN)的智能聊天机器人系统 本设计研究智能聊天机器人技术,基于循环神经网络构建了一套智能聊天机器人系统,系统将由以下几个部分构成:制作问答聊天数据集.RNN神经网络搭建.seq2s ...
- 智能聊天机器人——基于RASA搭建
前言: 最近了解了一下Rasa,阅读了一下官方文档,初步搭建了一个聊天机器人. 官方文档:https://rasa.com/docs/ 搭建的chatbot项目地址: https://github.c ...
- 计算机网络课设之基于UDP协议的简易聊天机器人
前言:2017年6月份计算机网络的课设任务,在同学的帮助和自学下基本搞懂了,基于UDP协议的基本聊天的实现方法.实现起来很简单,原理也很简单,主要是由于老师必须要求使用C语言来写,所以特别麻烦,而且C ...
- 人工智能不过尔尔,基于Python3深度学习库Keras/TensorFlow打造属于自己的聊天机器人(ChatRobot)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_178 聊天机器人(ChatRobot)的概念我们并不陌生,也许你曾经在百无聊赖之下和Siri打情骂俏过,亦或是闲暇之余与小爱同学谈 ...
随机推荐
- [python]《Python编程快速上手:让繁琐工作自动化》学习笔记6
1. 发送电子邮件和短信笔记(第16章)(代码下载) 1.1 发送电子邮件 简单邮件传输协议(SMTP)是用于发送电子邮件的协议.SMTP 规定电子邮件应该如何格式化.加密.在邮件服务器之间传递,以及 ...
- 红客突击队&突击队分队
红客突击队,于2019年,由队长k龙联合国内多位顶尖高校研究生牵头成立.其团队从成立至今多次参加国际网络安全竞赛并取得良好成绩,积累了丰富的竞赛经验.团队现有三十多位正式成员及若干预备人员,旨在打造国 ...
- excel文件 实现自动处理数据的功能
目录 问题描述: 解决方案: 一.SQL查询 二.SQL.python处理 三.python处理 四.优化python处理 1.手动执行代码 2.开机自动执行代码 对比四种方案: 总结: 问题描述: ...
- 【实战】yolov8 tensorrt模型加速部署
[实战]yolov8 tensorrt模型加速部署 TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux,在2023年已经更 ...
- vue中wowjs的使用
笔者亲测,在vue中使用wow.js如果不按照以下方法实施,会出现意想不到的BUG,网页刷新后图片就全部突然看不到了,被增加了一个隐藏属性,建议大家严格按照方法执行,不要随意使用 (1)通过npm安装 ...
- SQLSERVER 事务日志的 LSN 到底是什么?
一:背景 1. 讲故事 大家都知道数据库应用程序 它天生需要围绕着数据文件打转,诸如包含数据的 .mdf,事务日志的 .ldf,很多时候深入了解这两类文件的合成原理,差不多对数据库就能理解一半了,关于 ...
- 上古神兵,先天至宝,Win11平台安装和配置NeoVim0.8.2编辑器搭建Python3开发环境(2023最新攻略)
毫无疑问,我们生活在编辑器的最好年代,Vim是仅在Vi之下的神级编辑器,而脱胎于Vim的NeoVim则是这个时代最好的编辑器,没有之一.异步支持.更好的内存管理.更快的渲染速度.更多的编辑命令,是大神 ...
- odoo资料
https://www.cnblogs.com/smarttony/category/1484288.html
- 在Spring Boot中整合Katharsis,来快速开发JSON API的Web应用
1 简介 我们进行Web API开发的时候,经常会使用Json格式的消息体,而Json格式非常灵活,不同的人会有不同的设计风格和实现,而JSON API提供了一套标准.但它并不提供直接实现. Kath ...
- 在 SpringBoot 项目中简单实现 JWT 验证
使用 SpringBoot 提供 api 的时候,我更喜欢使用 jwt 的方式来做验证.网上有会多 Spring Security 整合 jwt 的,也有 Shiro 整合 jwt 的,感觉有点复杂. ...