这里记录从最基础的基于规则的聊天机器人,升级到基于逻辑的机器人,再升级到调用Google提供的API来让机器人能说、会听普通话。

最基本的完全基于规则式的问答:问什么就答什么,幼儿园水平。

import random

# 打招呼
greetings = ['hola', 'hello', 'hi', 'Hi', 'hey!','hey']
# 回复打招呼
random_greeting = random.choice(greetings)

# 对于“你怎么样?”这个问题的回复
question = ['How are you?','How are you doing?']
# “我很好”
responses = ['Okay',"I'm fine"]
# 随机选一个回
random_response = random.choice(responses)

# 机器人跑起来
while True:
    userInput = input(">>> ")
    if userInput in greetings:
        print(random_greeting)
    elif userInput in question:
        print(random_response)
    # 除非你说“拜拜”
    elif userInput == 'bye':
        break
    else:
        print("I did not understand what you said")
}

>>> hi
hey
>>> how are u
I did not understand what you said
>>> how are you
I did not understand what you said
>>> how are you?
I did not understand what you said
>>> How are you?
I'm fine
>>> bye

完全基于规则的问答会使召回率极低,因为难以列举的问法太多。

升级I: 现在,我们使用关键词匹配来升级我们的机器人。透过关键词来判断这句话的意图是什么(intents)。

from nltk import word_tokenize
import random

# 打招呼
greetings = ['hola', 'hello', 'hi', 'Hi', 'hey!','hey']
# 回复打招呼
random_greeting = random.choice(greetings)

# 对于“假期”的话题关键词
question = ['break','holiday','vacation','weekend']
# 回复假期话题
responses = ['It was nice! I went to Paris',"Sadly, I just stayed at home"]
# 随机选一个回
random_response = random.choice(responses)

# 机器人跑起来
while True:
    userInput = input(">>> ")
    # 清理一下输入,看看都有哪些词
    cleaned_input = word_tokenize(userInput)
    # 这里,我们比较一下关键词,确定他属于哪个问题
    if  not set(cleaned_input).isdisjoint(greetings):
        print(random_greeting)
    elif not set(cleaned_input).isdisjoint(question):
        print(random_response)
    # 除非你说“拜拜”
    elif userInput == 'bye':
        break
    else:
        print("I did not understand what you said")
>>> hi
hey
>>> how was your holiday?
It was nice! I went to Paris
>>> wow, amazing!
I did not understand what you said
>>> bye

大概能发现,这依旧是文字层面的“精准对应”。

现在主流的研究方向,是做到语义层面的对应。

比如,“肚子好饿哦”, “饭点到了”都应该表示的是要吃饭了的意思。

在这个层面就需要用到word vector之类的embedding方法,这些内容将是本博客不断更新的重头戏。

升级II : 建立一个简易的知识图谱来存储“知识体系”

# 建立一个基于目标行业的database
# 比如 这里我们用python自带的graph
graph = {'上海': ['苏州', '常州'],
         '苏州': ['常州', '镇江'],
         '常州': ['镇江'],
         '镇江': ['常州'],
         '盐城': ['南通'],
         '南通': ['常州']}

# 明确如何找到从A到B的路径
def find_path(start, end, path=[]):
    path = path + [start]
    if start == end:
        return path
    if start not in graph:
        return None
    for node in graph[start]:
        if node not in path:
            newpath = find_path(node, end, path)
            if newpath: return newpath
    return None
print(find_path('上海', "镇江"))
['上海', '苏州', '常州', '镇江']

使用python版本的prolog:PyKE,它可以构建一种复杂的逻辑网络,让你方便提取信息,而不至于需要你亲手code所有的信息:

son_of(bruce, thomas, norma)
son_of(fred_a, thomas, norma)
son_of(tim, thomas, norma)
daughter_of(vicki, thomas, norma)
daughter_of(jill, thomas, norma)

升级III:  利用Google的API(需FQ)实现文字合成语音,以及语音识别。

from gtts import gTTS
import os
tts = gTTS(text='您好,我是您的私人助手,我叫小飞侠', lang='zh-tw')
tts.save("hello.mp3")
os.system("mpg321 hello.mp3")

同理,除了语音识别,调用Google的接口还可实现语音识别(注意:这里需要你的机器安装几个库 SpeechRecognition, PyAudio 和 PySpeech)

import speech_recognition as sr
from time import ctime
import time
import os
from gtts import gTTS
import sys

# 讲出来AI的话
def speak(audioString):
    print(audioString)
    tts = gTTS(text=audioString, lang='en')
    tts.save("audio.mp3")
    os.system("mpg321 audio.mp3")

# 录下来你讲的话
def recordAudio():
    # 用麦克风记录下你的话
    r = sr.Recognizer()
    with sr.Microphone() as source:
        audio = r.listen(source)

    # 用Google API转化音频
    data = ""
    try:
        data = r.recognize_google(audio)
        print("You said: " + data)
    except sr.UnknownValueError:
        print("Google Speech Recognition could not understand audio")
    except sr.RequestError as e:
        print("Could not request results from Google Speech Recognition service; {0}".format(e))

    return data

# 自带的对话技能(rules)
def jarvis():

    while True:

        data = recordAudio()

        if "how are you" in data:
            speak("I am fine")

        if "what time is it" in data:
            speak(ctime())

        if "where is" in data:
            data = data.split(" ")
            location = data[2]
            speak("Hold on Tony, I will show you where " + location + " is.")
            os.system("open -a Safari https://www.google.com/maps/place/" + location + "/&")

        if "bye" in data:
            speak("bye bye")
            break

# 初始化
time.sleep(2)
speak("Hi Tony, what can I do for you?")

# 跑起
jarvis()

Hi Tony, what can I do for you?
You said: how are you
I am fine
You said: what time is it now
Mon Oct 15 18:16:54 2018
You said: where is London
Hold on Tony, I will show you where London is.
You said: ok bye bye
bye bye

从零开始升级基于RuleBased的聊天机器人的更多相关文章

  1. python 小脚本升级-- 钉钉群聊天机器人

    一则小脚本(工作中用) 在这篇文章中写的监控的脚本,发送监控的时候 是利用的邮箱,其实在实际,邮箱查收有着不方便性,于是乎升级, 我们工作中,经常用钉钉,那么如果要是能用到钉钉多好,这样我们的监控成功 ...

  2. 基于itchat定制聊天机器人

    #coding=utf8import requestsimport itchat #key自己到图灵注册一个 KEY = '************************************** ...

  3. 基于PaddlePaddle的语义匹配模型DAM,让聊天机器人实现完美回复 |

    来源商业新知网,原标题:让聊天机器人完美回复 | 基于PaddlePaddle的语义匹配模型DAM 语义匹配 语义匹配是NLP的一项重要应用.无论是问答系统.对话系统还是智能客服,都可以认为是问题和回 ...

  4. AI中台——智能聊天机器人平台的架构与应用(分享实录)

    内容来源:宜信技术学院第3期技术沙龙-线上直播|AI中台——智能聊天机器人平台 主讲人:宜信科技中心AI中台团队负责人王东 导读:随着“中台”战略的提出,目前宜信中台建设在思想理念及架构设计上都已经取 ...

  5. 【自然语言处理篇】--Chatterbot聊天机器人

    一.前述 ChatterBot是一个基于机器学习的聊天机器人引擎,构建在python上,主要特点是可以自可以从已有的对话中进行学(jiyi)习(pipei). 二.具体 1.安装 是的,安装超级简单, ...

  6. ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]

    ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...

  7. 深度学习项目——基于循环神经网络(RNN)的智能聊天机器人系统

    基于循环神经网络(RNN)的智能聊天机器人系统 本设计研究智能聊天机器人技术,基于循环神经网络构建了一套智能聊天机器人系统,系统将由以下几个部分构成:制作问答聊天数据集.RNN神经网络搭建.seq2s ...

  8. 智能聊天机器人——基于RASA搭建

    前言: 最近了解了一下Rasa,阅读了一下官方文档,初步搭建了一个聊天机器人. 官方文档:https://rasa.com/docs/ 搭建的chatbot项目地址: https://github.c ...

  9. 计算机网络课设之基于UDP协议的简易聊天机器人

    前言:2017年6月份计算机网络的课设任务,在同学的帮助和自学下基本搞懂了,基于UDP协议的基本聊天的实现方法.实现起来很简单,原理也很简单,主要是由于老师必须要求使用C语言来写,所以特别麻烦,而且C ...

  10. 人工智能不过尔尔,基于Python3深度学习库Keras/TensorFlow打造属于自己的聊天机器人(ChatRobot)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_178 聊天机器人(ChatRobot)的概念我们并不陌生,也许你曾经在百无聊赖之下和Siri打情骂俏过,亦或是闲暇之余与小爱同学谈 ...

随机推荐

  1. Hadoop详解(02)Hadoop集群运行环境搭建

    Hadoop详解(02)Hadoop集群运行环境搭建 虚拟机环境准备 虚拟机节点数:3台 操作系统版本:CentOS-7.6-x86-1810 虚拟机 内存4G,硬盘99G IP地址分配 192.16 ...

  2. 全志V3S 调试串口更改或关闭

    有时项目外设比较多,很容易造成串口不够用的情况. 最近就遇到了,新增加一个GPS模块串口的,串口现在外部只有原来的调试串口可以用,所以 尝试将调试口更改为普通串口. 经过网上看大神们的文章和自己摸索, ...

  3. day13-实现Spring底层机制-03

    实现Spring底层机制-03 7.实现任务阶段5 7.1分析 阶段5目标:bean后置处理器的实现 7.2代码实现 新增: 1.创建 InitializingBean 接口,实现该接口的 Bean ...

  4. 单实例Primary快速搭建Standby RAC参考手册(19.16 ADG)

    环境:Single Instance -> RAC Single Instance: db_name=demo db_unique_name=demo instance_name=demo se ...

  5. 【分析笔记】Linux input 子系统原理分析

    一.input 子系统简介 输入子系统主要用于支持各种输入设备,可大大简化这类设备驱动的开发难度.以下为个人的理解,可能不同的内核版本会略有差异,在这里分析的内核为 linux-4.9. 无论在 Li ...

  6. [USACO17JAN]Cow Dance Show S更新ing

    这道题目是二分舞台大小,为什么能用二分呢?因为如果mid成立 则mid~r都成立,如果mid不成立l~mid就都不成立,也就是严格单调,所以可以使用二分快速找到k. check函数的思路: 实现:在舞 ...

  7. 843. n-皇后问题

    题目: 这 道 题 呢 唯 一 一 点 与 其 他 题 目 不 同 之 处 就 是 它 有 有 3 个 v i s 数 组 以及是一行一行深搜的. 主要思路为: 从第一行 到第n行,一行放一个,这一行 ...

  8. css当文字过长时,显示省略号

    /* 省略号三属性 */ /* 强制不换行 */ white-space: nowrap; /* 溢出隐藏 */ overflow: hidden; /* 省略号 */ text-overflow: ...

  9. 微信小程序自定义导航栏机型适配

    自定义微信小程序头部导航栏,有几种方式 方式一 { "navigationStyle": "custom" // 将navigationStyle从默认defa ...

  10. 提取show config命令结果

    import re import os # 从命令收集日志文件中,提取show config命令结果. file_list = os.listdir(os.getcwd()) dirname = os ...