这里记录从最基础的基于规则的聊天机器人,升级到基于逻辑的机器人,再升级到调用Google提供的API来让机器人能说、会听普通话。

最基本的完全基于规则式的问答:问什么就答什么,幼儿园水平。

import random

# 打招呼
greetings = ['hola', 'hello', 'hi', 'Hi', 'hey!','hey']
# 回复打招呼
random_greeting = random.choice(greetings)

# 对于“你怎么样?”这个问题的回复
question = ['How are you?','How are you doing?']
# “我很好”
responses = ['Okay',"I'm fine"]
# 随机选一个回
random_response = random.choice(responses)

# 机器人跑起来
while True:
    userInput = input(">>> ")
    if userInput in greetings:
        print(random_greeting)
    elif userInput in question:
        print(random_response)
    # 除非你说“拜拜”
    elif userInput == 'bye':
        break
    else:
        print("I did not understand what you said")
}

>>> hi
hey
>>> how are u
I did not understand what you said
>>> how are you
I did not understand what you said
>>> how are you?
I did not understand what you said
>>> How are you?
I'm fine
>>> bye

完全基于规则的问答会使召回率极低,因为难以列举的问法太多。

升级I: 现在,我们使用关键词匹配来升级我们的机器人。透过关键词来判断这句话的意图是什么(intents)。

from nltk import word_tokenize
import random

# 打招呼
greetings = ['hola', 'hello', 'hi', 'Hi', 'hey!','hey']
# 回复打招呼
random_greeting = random.choice(greetings)

# 对于“假期”的话题关键词
question = ['break','holiday','vacation','weekend']
# 回复假期话题
responses = ['It was nice! I went to Paris',"Sadly, I just stayed at home"]
# 随机选一个回
random_response = random.choice(responses)

# 机器人跑起来
while True:
    userInput = input(">>> ")
    # 清理一下输入,看看都有哪些词
    cleaned_input = word_tokenize(userInput)
    # 这里,我们比较一下关键词,确定他属于哪个问题
    if  not set(cleaned_input).isdisjoint(greetings):
        print(random_greeting)
    elif not set(cleaned_input).isdisjoint(question):
        print(random_response)
    # 除非你说“拜拜”
    elif userInput == 'bye':
        break
    else:
        print("I did not understand what you said")
>>> hi
hey
>>> how was your holiday?
It was nice! I went to Paris
>>> wow, amazing!
I did not understand what you said
>>> bye

大概能发现,这依旧是文字层面的“精准对应”。

现在主流的研究方向,是做到语义层面的对应。

比如,“肚子好饿哦”, “饭点到了”都应该表示的是要吃饭了的意思。

在这个层面就需要用到word vector之类的embedding方法,这些内容将是本博客不断更新的重头戏。

升级II : 建立一个简易的知识图谱来存储“知识体系”

# 建立一个基于目标行业的database
# 比如 这里我们用python自带的graph
graph = {'上海': ['苏州', '常州'],
         '苏州': ['常州', '镇江'],
         '常州': ['镇江'],
         '镇江': ['常州'],
         '盐城': ['南通'],
         '南通': ['常州']}

# 明确如何找到从A到B的路径
def find_path(start, end, path=[]):
    path = path + [start]
    if start == end:
        return path
    if start not in graph:
        return None
    for node in graph[start]:
        if node not in path:
            newpath = find_path(node, end, path)
            if newpath: return newpath
    return None
print(find_path('上海', "镇江"))
['上海', '苏州', '常州', '镇江']

使用python版本的prolog:PyKE,它可以构建一种复杂的逻辑网络,让你方便提取信息,而不至于需要你亲手code所有的信息:

son_of(bruce, thomas, norma)
son_of(fred_a, thomas, norma)
son_of(tim, thomas, norma)
daughter_of(vicki, thomas, norma)
daughter_of(jill, thomas, norma)

升级III:  利用Google的API(需FQ)实现文字合成语音,以及语音识别。

from gtts import gTTS
import os
tts = gTTS(text='您好,我是您的私人助手,我叫小飞侠', lang='zh-tw')
tts.save("hello.mp3")
os.system("mpg321 hello.mp3")

同理,除了语音识别,调用Google的接口还可实现语音识别(注意:这里需要你的机器安装几个库 SpeechRecognition, PyAudio 和 PySpeech)

import speech_recognition as sr
from time import ctime
import time
import os
from gtts import gTTS
import sys

# 讲出来AI的话
def speak(audioString):
    print(audioString)
    tts = gTTS(text=audioString, lang='en')
    tts.save("audio.mp3")
    os.system("mpg321 audio.mp3")

# 录下来你讲的话
def recordAudio():
    # 用麦克风记录下你的话
    r = sr.Recognizer()
    with sr.Microphone() as source:
        audio = r.listen(source)

    # 用Google API转化音频
    data = ""
    try:
        data = r.recognize_google(audio)
        print("You said: " + data)
    except sr.UnknownValueError:
        print("Google Speech Recognition could not understand audio")
    except sr.RequestError as e:
        print("Could not request results from Google Speech Recognition service; {0}".format(e))

    return data

# 自带的对话技能(rules)
def jarvis():

    while True:

        data = recordAudio()

        if "how are you" in data:
            speak("I am fine")

        if "what time is it" in data:
            speak(ctime())

        if "where is" in data:
            data = data.split(" ")
            location = data[2]
            speak("Hold on Tony, I will show you where " + location + " is.")
            os.system("open -a Safari https://www.google.com/maps/place/" + location + "/&")

        if "bye" in data:
            speak("bye bye")
            break

# 初始化
time.sleep(2)
speak("Hi Tony, what can I do for you?")

# 跑起
jarvis()

Hi Tony, what can I do for you?
You said: how are you
I am fine
You said: what time is it now
Mon Oct 15 18:16:54 2018
You said: where is London
Hold on Tony, I will show you where London is.
You said: ok bye bye
bye bye

从零开始升级基于RuleBased的聊天机器人的更多相关文章

  1. python 小脚本升级-- 钉钉群聊天机器人

    一则小脚本(工作中用) 在这篇文章中写的监控的脚本,发送监控的时候 是利用的邮箱,其实在实际,邮箱查收有着不方便性,于是乎升级, 我们工作中,经常用钉钉,那么如果要是能用到钉钉多好,这样我们的监控成功 ...

  2. 基于itchat定制聊天机器人

    #coding=utf8import requestsimport itchat #key自己到图灵注册一个 KEY = '************************************** ...

  3. 基于PaddlePaddle的语义匹配模型DAM,让聊天机器人实现完美回复 |

    来源商业新知网,原标题:让聊天机器人完美回复 | 基于PaddlePaddle的语义匹配模型DAM 语义匹配 语义匹配是NLP的一项重要应用.无论是问答系统.对话系统还是智能客服,都可以认为是问题和回 ...

  4. AI中台——智能聊天机器人平台的架构与应用(分享实录)

    内容来源:宜信技术学院第3期技术沙龙-线上直播|AI中台——智能聊天机器人平台 主讲人:宜信科技中心AI中台团队负责人王东 导读:随着“中台”战略的提出,目前宜信中台建设在思想理念及架构设计上都已经取 ...

  5. 【自然语言处理篇】--Chatterbot聊天机器人

    一.前述 ChatterBot是一个基于机器学习的聊天机器人引擎,构建在python上,主要特点是可以自可以从已有的对话中进行学(jiyi)习(pipei). 二.具体 1.安装 是的,安装超级简单, ...

  6. ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]

    ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...

  7. 深度学习项目——基于循环神经网络(RNN)的智能聊天机器人系统

    基于循环神经网络(RNN)的智能聊天机器人系统 本设计研究智能聊天机器人技术,基于循环神经网络构建了一套智能聊天机器人系统,系统将由以下几个部分构成:制作问答聊天数据集.RNN神经网络搭建.seq2s ...

  8. 智能聊天机器人——基于RASA搭建

    前言: 最近了解了一下Rasa,阅读了一下官方文档,初步搭建了一个聊天机器人. 官方文档:https://rasa.com/docs/ 搭建的chatbot项目地址: https://github.c ...

  9. 计算机网络课设之基于UDP协议的简易聊天机器人

    前言:2017年6月份计算机网络的课设任务,在同学的帮助和自学下基本搞懂了,基于UDP协议的基本聊天的实现方法.实现起来很简单,原理也很简单,主要是由于老师必须要求使用C语言来写,所以特别麻烦,而且C ...

  10. 人工智能不过尔尔,基于Python3深度学习库Keras/TensorFlow打造属于自己的聊天机器人(ChatRobot)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_178 聊天机器人(ChatRobot)的概念我们并不陌生,也许你曾经在百无聊赖之下和Siri打情骂俏过,亦或是闲暇之余与小爱同学谈 ...

随机推荐

  1. 一篇文章带你了解设计模式原理——UML图和软件设计原则

    一篇文章带你了解设计模式原理--UML图和软件设计原则 我们在学习过程中可能并不会关心设计模式,但一旦牵扯到项目和面试,设计模式就成了我们的短板 这篇文章并不会讲到二十三种设计模式,但是会讲解设计模式 ...

  2. 【转载】EXCEL VBA 中的Range.offset和Range.resize

    在Excel VBA中range.offset和range.resize均可以重新选择区域,但range.offset表示偏移且偏移后尺寸不改变,range.resize则会根据输入的行数和列数重新定 ...

  3. java8新特性学习笔记

    目录 1.速度更快 2.Lambda表达式 2.1.匿名内部类的Lambda转换 2.2.java8内置的四大核心函数式接口 2.3.方法引用和构造器 2.3.1.方法引用 2.3.2.构造器引用 2 ...

  4. python进阶之路19 地狱之门购物车!!!!

    地狱之门 # # 项目功能 # 1.用户注册 # 2.用户登录 # 3.添加购物车 # 4.结算购物车 # # 项目说明 # 用户数据采用json格式存储到文件目录db下 一个用户一个单独的文件 # ...

  5. 算法学习笔记(9): 中国剩余定理(CRT)以及其扩展(EXCRT)

    扩展中国剩余定理 讲解扩展之前,我们先叙述一下普通的中国剩余定理 中国剩余定理 中国剩余定理通过一种非常精巧的构造求出了一个可行解 但是毕竟是构造,所以相对较复杂 \[\begin{cases} x ...

  6. jQuery查找标签、操作标签、事件和动画效果,Bootstrap页面框架的介绍和使用讲解

    今日内容 jQuery查找标签 1.基本选择器: $('#d1') id选择器 $('.c1') class选择器 $('div') 标签选择器 2.组合选择器: $('div#d1') 查找id是d ...

  7. Linux的串口非标准波特率设置更改

    用的是全志的R528 SDK,Linux内核是5.4,新增加一个250000的非标准波特率 参考网络大神文档,实践并记录宝贵的经验. 方法: 1.修改内核的/include/uapi/asm-gene ...

  8. flutter学习第一天笔记-----学习资源总结

  9. CAN2-CH32V307CAN2使用说明与CAN波特率计算方法

    一.修改引脚 CH32V307CAN2的TX为PB13,RX为PB12 注意用CAN2时需要初始化CAN1的时钟. 二.配置CAN2过滤器开始的组(组号与图24-4相对应) 三.将FIFO0改为FIF ...

  10. 教你解决虚拟机用不了USB设备的苦恼。

    如果你看见了上图的效果说明我们的苦恼是一样一样的. vm10 vm11 vm player都有这个问题!!!!  对不对?哈哈 . 在虚拟机右击设备点击连接(Connect) 然后听见你的电脑发出了硬 ...