#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std; //****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;//随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
} //计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==)return x%mod;
x%=mod;
long long tmp=x;
long long ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
long long x=n-;
long long t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
long long a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==)return ;//???????
if(a<) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=,k=;
long long x0=rand()%x;
long long y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
} int main()
{
//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
long long n;
while(scanf("%I64d",&n)!=EOF)
{
tol=;
findfac(n);
for(int i=;i<tol;i++)printf("%I64d ",factor[i]);
printf("\n");
if(Miller_Rabin(n))printf("Yes\n");
else printf("No\n");
}
return ;
}

algorithm@ 大素数判定和大整数质因数分解的更多相关文章

  1. Miller_Rabin()算法素数判定 +ollard_rho 算法进行质因数分解

    //****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以 ...

  2. FZU 1649 Prime number or not米勒拉宾大素数判定方法。

    C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  3. 公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法!

    公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法! 先存档再说,以后实验报告还得打印上交. Miller-Rabin大素数判定对于学算法的人来讲不是什么难事,主要了解其原理. 先来灌 ...

  4. Project Euler 29 Distinct powers( 大整数质因数分解做法 + 普通做法 )

    题意: 考虑所有满足2 ≤ a ≤ 5和2 ≤ b ≤ 5的整数组合生成的幂ab: 22=4, 23=8, 24=16, 25=3232=9, 33=27, 34=81, 35=24342=16, 4 ...

  5. Miller Robin大素数判定

    Miller Robin算法 当要判断的数过大,以至于根n的算法不可行时,可以采用这种方法来判定素数. 用于判断大于2的奇数(2和偶数需要手动判断),是概率意义上的判定,因此需要做多次来减少出错概率. ...

  6. CSU 1552: Friends 图论匹配+超级大素数判定

    1552: Friends Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 163  Solved: 34[Submit][Status][Web Boa ...

  7. HDU 4344 大数分解大素数判定

    这里贴个模板吧.反正是不太理解 看原题就可以理解用法!! #include <cstdio> #include <iostream> #include <algorith ...

  8. 计蒜客 25985.Goldbach-米勒拉宾素数判定(大素数) (2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 B)

    若干年之前的一道题,当时能写出来还是超级开心的,虽然是个板子题.一直忘记写博客,备忘一下. 米勒拉判大素数,关于米勒拉宾是个什么东西,传送门了解一下:biubiubiu~ B. Goldbach 题目 ...

  9. Miller_Rabbin算法判断大素数,Pollard_rho算法进行质因素分解

    Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法.它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于1.也就是对于所有小于p的正整数a来说 ...

随机推荐

  1. Fiddler 日志

    Fiddler 日志(Logging) 在开发扩展插件及编写FiddlerScript时对调试程序非常有用. 1.输出日志 在FiddlerScript脚本中,你可以这样输出输出日志: Fiddler ...

  2. 缺少编译器要求的成员“System.Runtime.CompilerServices.ExtensionAttribute..ctor” 解决方案

    静态类中添加如下.此方法本人测试有效. //缺少编译器要求的成员“ystem.Runtime.CompilerServices.ExtensionAttribute..ctor” namespace  ...

  3. 李洪强iOS开发之 - WebViewJavascriptBridge

    李洪强iOS开发之 - WebViewJavascriptBridge 01 - JS端:   02 - iOS端 01 遵守代理协议 02 申明属性 03 开启日志 04 给哪个webview建立J ...

  4. js 中多维数组的深拷贝的多种实现方式

    因为javascript分原始类型与引用类型(与java.c#类似).Array是引用类型,所以直接用=号赋值的话,只是把源数组的地址(或叫指针)赋值给目的数组,并没有实现数组的数据的拷贝.另外对一维 ...

  5. ajax readyState的五种状态详解

    通过ajax的readyState的值,我们可以知道当前的这个http请求处于什么状态.对于web的调试是比较重要的. readyState 状态说明: (0)未初始化 此阶段确认XMLHttpReq ...

  6. IOS开发基础

    http://blog.csdn.net/wokenshin/article/details/50292253 1.修改UI大小 2.设置颜色 3.禁止横屏 4.点击空白处隐藏键盘 5.弹出键盘时,后 ...

  7. Android:自定义标题栏

    现在很多的Android程序都在标题栏上都显示了一些按钮和标题,这里尝试做个实例 在onCreate中添加: //自定义标题 requestWindowFeature(Window.FEATURE_C ...

  8. Trainning Guide的代码

    今天无意间找到了训练指南的网上代码,都是刘汝佳写的,在这. 今天在做这题1400 - "Ray, Pass me the dishes!",我写的线段树的思路跟上次的Frequen ...

  9. 如何快速查看linux的发行版信息

    思路一: 在CentOS中想查看发行版信息,输入了lsb_release -a 命令却报错了,通过输入以下命令进行安装 yum install redhat-lsb -y 然后继续查看发行版信息 [r ...

  10. 【HDOJ】2385 Stock

    水题,逆向做+优先级队列. /* 2385 */ #include <iostream> #include <sstream> #include <string> ...