SDUT2482二叉排序树
http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2482&cid=1184
题目描述
二叉排序树的定义是:或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。 今天我们要判断两序列是否为同一二叉排序树
输入
示例输入
2
123456789
987654321
432156789
0
示例输出
NO
NO
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
//int mark=1;
typedef struct node
{
char data;
struct node *lchild,*rchild;
} BiTreeNode,*BiTree;
char sh[],sh1[],sh2[];
char ch[];
int count=;
int BSTinsert(BiTree *T,char x);//建立排序二叉树,也就是所谓的插入操作。
void InOrderTraverse(BiTree T);//二叉树的先序遍历,不知道为什么用中序会错误
int judge(char a[],char b[]);
int main()
{
int len;
int n;
while(scanf("%d",&n)&&n)
{
count=;//我错了5遍,都是因为没有在这里再归0一遍,因为是多组输入,所以这里必须有这句话,要不然以后的会覆盖
BiTree T=NULL,T1;
scanf("%s",ch);
int len1 = strlen(ch);
for(int i=;i<=len1-;i++)
{
BSTinsert(&T,ch[i]);
}
InOrderTraverse(T);
sh1[count]='\0';//这里要加结束符
strcpy(sh2,sh1);//因为在下面的操作中sh1的值会被覆盖,所以在这里的话要提前赋值给sh2;
for(int i=;i<=n;i++)
{
count=;
T1=NULL;
memset(sh1,,sizeof(sh1));
scanf("%s",sh);
len=strlen(sh);
for(int j=;j<=len-;j++)
{
BSTinsert(&T1,sh[j]);
}
InOrderTraverse(T1);
sh1[count]='\0';
int flag=judge(sh1,sh2);
if(flag)
printf("YES\n");
else
printf("NO\n");
}
}
return ;
}
int judge(char a[],char b[])
{
if(strcmp(a,b)==)
return ;
else
return ;
}
int BSTinsert(BiTree *T,char x)
{
BiTreeNode *p,*cur,*parent=NULL;
cur=*T;
while(cur!=NULL)
{
parent=cur;
if(x<cur->data)
cur=cur->lchild;
else
cur=cur->rchild;
}
p=(BiTreeNode *)malloc(sizeof(BiTreeNode));
p->data=x;
p->lchild=NULL;
p->rchild=NULL;
if(!parent)
*T=p;
else if(x<parent->data)
parent->lchild=p;
else
parent->rchild=p;
return ;
}
void InOrderTraverse(BiTree T)
{
if(T)
{
sh1[count++] = T->data;
InOrderTraverse(T->lchild);
InOrderTraverse(T->rchild);
}
}
SDUT2482二叉排序树的更多相关文章
- 【数据结构】简单谈一谈二分法和二叉排序树BST查找的比较
二分法查找: 『在有序数组的基础上通过折半方法不断缩小查找范围,直至命中或者查询失败.』 二分法的存储要求:要求顺序存储,以便于根据下标随机访问 二分法的时间效率:O(Log(n)) 二分 ...
- 二叉排序树(BST)创建,删除,查找操作
binary search tree,中文翻译为二叉搜索树.二叉查找树或者二叉排序树.简称为BST 一:二叉搜索树的定义 他的定义与树的定义是类似的,也是一个递归的定义: 1.要么是一棵空树 2.如果 ...
- 数据结构图文解析之:树的简介及二叉排序树C++模板实现.
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 二叉树建立,遍历和二叉排序树的判断【c++】
// test.cpp : Defines the entry point for the console application. // #include "stdafx.h" ...
- PAT A 1115. Counting Nodes in a BST (30)【二叉排序树】
题目:二叉排序树,统计最后两层节点个数 思路:数组格式存储,insert建树,dfs遍历 #include<cstdio> #include<iostream> #includ ...
- 二叉排序树(Binary Sort Tree)
参考文章:http://blog.csdn.net/ns_code/article/details/19823463 不过博主的使用第一种方法操作后的树已经不是二叉排序树了,值得深思!! #inclu ...
- HDU 3999 二叉排序树
The order of a Tree Problem Description The shape of a binary search tree is greatly related to the ...
- 二叉排序树(BST)的建立
给一个非递归的吧. /* 已知,二叉树存储结构定义见bstree.h,请编写一个算法函数bstree creatBstree(int a[],int n), 以数组a中的数据作为输入建立一棵二叉排序树 ...
- POJ 2418 各种二叉排序树
题意很明确,统计各个字符串所占总串数的百分比,暴力的话肯定超时,看了书上的题解后发现这题主要是用二叉排序树来做,下面附上n种树的代码. 简单的二叉排序树,不作任何优化(C语言版的): #include ...
随机推荐
- JS事件冒泡与捕获
1事件传播——冒泡与捕获 默认情况下,事件使用冒泡事件流,不使用捕获事件流.然而,在Firefox和Safari里,你可以显式的指定使用捕获事件流,方法是在注册事件时传入useCapture参数,将这 ...
- php中的in_array分析及其替换方法
php中的in_array函数效率分析 http://www.jb51.net/article/41446.htm http://www.server110.com/php/201309/1150.h ...
- javascript "\" 在字符串里的是转义的意思
"\n" 在字符串里是换行的意思 alert("dfdsad\ndfsdf"); //有换行 alert("abc\de"); // ...
- 重写DataGridViewColumn
做个项目需要用到DataGridView,这个控件还是挺好用的,但是今天却发现无法实现自己想要的功能.主要是DataGridViewCheckBoxColumn这个列虽然是提供了复选框,但是却未能在复 ...
- Silverlight动画的基本知识、关键帧动画
基础知识 (一)动画:是快速播放一系列图像(其中每个图像与下一个图像略微不同)给人造成的一种幻觉 (二)动画类型:两类 (1)From/To/By动画:在起始值和结束值之间进行动画处理. ...
- SequoiaDB 与 Hive 集成
SequoiaDB与Hadoop部署 SequoiaDB与Hadoop在物理上部署方案如下图所示,部署建议如下: l SequoiaDB与Hadoop部署在相同的物理设备上,以减少Hadoop与Se ...
- CentOS设置服务开机启动的方法
CentOS设置服务开机启动的两种方法 1.利用 chkconfig 来配置启动级别在CentOS或者RedHat其他系统下,如果是后面安装的服务,如httpd.mysqld.postfix等,安装后 ...
- JQuery 获取json数据$.getJSON方法的实例代码
这篇文章介绍了JQuery 获取json数据$.getJSON方法的实例代码,有需要的朋友可以参考一下 前台: function SelectProject() { var a = new Array ...
- table的边框线的设置
http://hi.baidu.com/weisuotang/item/a1d98ec298c0aa49a8ba9447 http://www.cnblogs.com/xinlei/archive/2 ...
- C# 缓存学习第一天
缓存应用目的:缓存主要是为了提高数据的读取速度.因为服务器和应用客户端之间存在着流量的瓶颈,所以读取大容量数据时,使用缓存来直接为客户端服务,可以减少客户端与服务器端的数据交互,从而大大提高程序的性能 ...