【BZOJ 1007】 [HNOI2008]水平可见直线
Description
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
-1 0
1 0
0 0
Sample Output
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#define eps 1e-8
const int inf=;
using namespace std;
struct node{double a,b;int no;}l[];
int n,top,stack[];
double x;
bool cmp(node a,node b){
if(fabs(a.a-b.a)<eps)return a.b<b.b;
else return a.a<b.a;
} double cal(node a,node b){
return (a.b-b.b)/(b.a-a.a);
} bool cmp2(int a,int b){
return l[a].no<l[b].no;
} int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%lf%lf",&l[i].a,&l[i].b),l[i].no=i;
sort(l+,l+n+,cmp);
double now=(l[].b-l[].b)/(l[].a-l[].a);
for(int i=;i<=n;i++){
while(top){
if(fabs(l[i].a-l[stack[top]].a)<eps) top--;
else if(top>&&cal(l[i],l[stack[top-]])<=cal(l[stack[top-]],l[stack[top]]))
top--;
else break;
}
stack[++top]=i;
}
sort(stack+,stack++top,cmp2);
printf("%d",l[stack[]].no);
for(int i=;i<=top;i++) printf(" %d",l[stack[i]].no);
}
【BZOJ 1007】 [HNOI2008]水平可见直线的更多相关文章
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
- BZOJ 1007 [HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4453 Solved: 1636[Submit][Sta ...
- 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- BZOJ 1007: [HNOI2008]水平可见直线 平面直线
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...
- bzoj 1007: [HNOI2008]水平可见直线 半平面交
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=1007; 题解 其实就是求每条直线的上半部分的交 所以做裸半平面交即可 #include ...
- bzoj 1007 : [HNOI2008]水平可见直线 计算几何
题目链接 给出n条直线, 问从y轴上方向下看, 能看到哪些直线, 输出这些直线的编号. 首先我们按斜率排序, 然后依次加入一个栈里面, 如果刚加入的直线, 和之前的那条直线斜率相等, 那么显然之前的会 ...
- BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)
题目链接 可以看出我们是要维护一个下凸壳. 先对斜率从小到大排序.斜率最大.最小的直线是一定会保留的,因为这是凸壳最边上的两段. 维护一个单调栈,栈中为当前可见直线(按照斜率排序). 当加入一条直线l ...
- BZOJ 1007 [HNOI2008]水平可见直线 ——半平面交 凸包
发现需要求一个下凸的半平面上有几个交点. 然后我们把它变成凸包的问题. 好写.好调.还没有精度误差. #include <map> #include <ctime> #incl ...
随机推荐
- 【转载】Deep Learning(深度学习)学习笔记整理
http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...
- .net导出Word的一种方法
由于ActiveX控件只支持IE(好像FF可以通过安装插件支持),所以js导出word的方式就比较局限 可是如果当页面经过js修改以后,.net是无法获取到的,所以要通过js获取到最新的html并传给 ...
- SQL备份(全)
====================================================================== SQL备份 ======================= ...
- 1 对WinMain的理解
就像C语言的main是它的程序路口一样,windows的程序入口是WinMain,WinMain的定义可以查看winbase.h文件. Hello Windows(c语言中的Hello world!) ...
- OSPF多区域配置
1.配置三台路由器IP R1(config)#INTER S1/0 R1(config-if)#IP ADDress 192.1.12.1 255.255.255.0 R1(config-if)#no ...
- JQuery的复选框选中、取消、全选,全不选问题
一.必须引入JQuery库: 下面是js代码: /*** * 服务管理块>>>复选框事件处理 */ //服务管理复选框被选中.取消$(function(){ $("#Ser ...
- IOS 后台执行
在IOS后台执行是本文要介绍的内容,大多数应用程序进入后台状态不久后转入暂停状态.在这种状态下,应用程序不执行任何代码,并有可能在任意时候从内存中删除.应用程序提供特定的服务,用户可以请求后台执行时间 ...
- WCF之并发,吞吐量和限流
并发 Single重入模式.对于每一个服务实例,同一时刻只能处理一个请求,其他对该实例的请求被排队. PerCall,每一线程会分配一个新的服务实例上.不会有并发性问题.不影响吞吐量. PerSess ...
- 延迟加载(Lazy Load)
一个对象,它虽然不包含所需要的所有数据,但是它知道怎么获取这些数据 设计专门的对象来把数据从DB中加载到内存中. 该对象可以完成在加载所需对象的同时,把与之相关的对象也一并加载了. 否则,必须显示加载 ...
- [javascript|基本概念|Number]学习笔记
Number类型的值:整数/浮点数值 整数 十进制 e.g.: var intNum = 50; 八进制 (严格模式下无效,解析错误)字面值首位必须是0,之后的数字序列为0-7 e.g.: va ...