题目链接 https://www.luogu.com.cn/problem/P2656

分析

  这其实是个一眼题(bushi

  发现如果没有那个恢复系数,缩个点就完了,有恢复系数呢?你发现这个恢复系数其实在DAG中没有用,因为走不回去不管怎么恢复都没啥用,所以对于走不回去的子图没有什么用,于是就想到了缩点,把每个强连通缩成一个点就完了,因为我能恢复的话肯定走的越多越好,所以就把每个强连通都榨干就完了,统计答案就dp一下,正好刚学的树形dp,所以大概思路就有了。

  我们先通过tarjan跑出强连通分量(有向图),然后缩点,最后dp,转移方程也挺简单的,dp[i]表示以i为跟的子树,初始化为W[i]

                \(dp[i]+=max(dp[v])\)我最开始想的版本

  但是有一个问题,这么定义的话缩点前权值在边上,缩点后权值在点上,我起初的处理办法是将边权都压到边的终点,因为我只有走过这条边才能获得这个权值,乍一看是没啥问题,但是呢?的确如果从根开始dp不会有问题,但这道题是从某一不定的节点开始dp的,这样就会出问题。

  比如这里,我t->s这条边的权值会被压到s点上,如果我从t开始dp,没问题,从s开始,明明没有走那条边,却加上了边权,WA。

  解决这个问题很简单啊,就特判一下,同一个连通分量内的点把权值压在点上,另外的放在边上,dp方程改成

                 \(dp[i]+=max(dp[v]+E.val)\)

  然后这个问题就解决了,这道题一开始Wa的主要原因还是点权边权的处理,当然也可能是没想太明白就开始打代码,导致出现问题,总结一下,以后要先想明白再写,想出来思路也不一定对

#include<iostream>
#include<cstdio>
using namespace std;
const int N=8e4+10,M=2e5+10;
struct Edge{
int fro,nxt,to,val;
double hui;
}e[M],E[M];
int Head[N],len;
void Ins(int a,int b,int c,double d){
e[++len].fro=a;e[len].to=b;e[len].nxt=Head[a];
Head[a]=len;e[len].val=c;e[len].hui=d;
}
inline int read(){
char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
int x=0;
while(ch<='9'&&ch>='0'){
x=x*10+ch-'0';
ch=getchar();
}
return x;
}
int dfn[N],low[N],belong[N],stk[N],top,scc_cnt,num;
void tarjan(int u){
dfn[u]=low[u]=++num;
stk[++top]=u;
for(int i=Head[u];i;i=e[i].nxt){
int v=e[i].to;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}else if(!belong[v])low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]){
scc_cnt++;
while(1){
int x=stk[top--];
belong[x]=scc_cnt;
if(x==u)break;
}
}
}
int H[N],l,w[N];
void I(int a,int b,int c){
E[++l].to=b;E[l].nxt=H[a];H[a]=l;E[l].val=c;
}
int dp[N];
void dfs(int u){
if(dp[u])return;
dp[u]=w[u];
int now=0;
for(int x=H[u];x;x=E[x].nxt){
int v=E[x].to;
dfs(v);
now=max(now,dp[v]+E[x].val);
}
dp[u]+=now;
}
int main(){
int n,m;
n=read();m=read();
for(int i=1;i<=m;i++){
int a,b,c;double d;
a=read();b=read();c=read();cin>>d;
Ins(a,b,c,d);
}
int s=read();
tarjan(s);
for(int i=1;i<=m;i++){
int u=belong[e[i].fro],v=belong[e[i].to];
if(u!=v)I(u,v,e[i].val);
if(u==v){
int now=e[i].val;double f=e[i].hui;
while(now){
w[v]+=now;
now=(int)now*f;
}
}
}
dfs(belong[s]);
cout<<dp[belong[s]];
}

洛谷 P2656 采蘑菇 树形DP+缩点+坑点的更多相关文章

  1. 洛谷——P2656 采蘑菇

    P2656 采蘑菇 题目描述 小胖和ZYR要去ESQMS森林采蘑菇. ESQMS森林间有N个小树丛,M条小径,每条小径都是单向的,连接两个小树丛,上面都有一定数量的蘑菇.小胖和ZYR经过某条小径一次, ...

  2. 洛谷—— P2656 采蘑菇

    https://www.luogu.org/problem/show?pid=2656 题目描述 小胖和ZYR要去ESQMS森林采蘑菇. ESQMS森林间有N个小树丛,M条小径,每条小径都是单向的,连 ...

  3. C++ 洛谷 2014 选课 from_树形DP

    洛谷 2014 选课 没学树形DP的,看一下. 首先要学会多叉树转二叉树. 树有很多种,二叉树是一种人人喜欢的数据结构,简单而且规则.但一般来说,树形动规的题目很少出现二叉树,因此将多叉树转成二叉树就 ...

  4. $loj10156/$洛谷$2016$ 战略游戏 树形$DP$

    洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...

  5. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  6. 洛谷P2607 [ZJOI2008]骑士(树形dp)

    题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...

  7. 洛谷$2014$ 选课 背包类树形$DP$

    luogu Sol 阶段和状态都是树形DP板子题,这里只讲一下背包的部分(转移)叭 它其实是一个分组背包模型,具体理解如下: 对于一个结点x,它由它的子结点y转移而来 在子结点y为根的树中可以选不同数 ...

  8. 洛谷 P2607 [ZJOI2008]骑士 树形DP

    题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...

  9. 洛谷 P1270 “访问”美术馆(树形DP)

    P1270 “访问”美术馆 题目描述 经过数月的精心准备,Peer Brelstet,一个出了名的盗画者,准备开始他的下一个行动.艺术馆的结构,每条走廊要么分叉为两条走廊,要么通向一个展览室.Peer ...

随机推荐

  1. jq拖拽插件

    (function ($) { var move = false; //标记控件是否处于被拖动状态 var dragOffsetX = 0; //控件左边界和鼠标X轴的差 var dragOffset ...

  2. Spring MVC知识梳理

    同上一篇博客,复习梳理SpringMVC知识点,这次的梳理比较快,很多细节没有顾虑到,后期可能会回来补充 1. 整体架构 1.1 在学习了SSM框架后我们来理清三者的应用层面 浏览器发送请求,请求到达 ...

  3. Python 爬虫 selenium 笔记

    1. selenium 安装, 与文档 pip install selenium Selenium with Python中文翻译文档 selenium官网英文文档 2. selenium 的第一个示 ...

  4. pycharm 关于模块安装出现的“[error] Microsoft Visual C++ 14.0 is required” 解决办法

    刚才正准备对pycharm进行一番操作的时候,噔  噔磴噔噔 “no module define xxx” ,那我当然要把xxx给搞到pycharm上来啊, 不一会功夫 ,biu~ “[error] ...

  5. SSRF漏洞的挖掘思路与技巧

    什么是SSRF? SSRF(Server-Side Request Forgery:服务器端请求伪造) 是一种由攻击者构造形成由服务端发起请求的一个安全漏洞.一般情况下,SSRF攻击的目标是从外网无法 ...

  6. Eureka 注册中心看这一篇就够了

    服务注册中心是服务实现服务化管理的核心组件,类似于目录服务的作用,主要用来存储服务信息,譬如提供者 url 串.路由信息等.服务注册中心是微服务架构中最基础的设施之一. 在微服务架构流行之前,注册中心 ...

  7. 前端每日实战:132# 视频演示如何用纯 CSS 创作一只思考的手

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/WgdVyx/ 可交互视频 此视频是 ...

  8. Java基础--数组的定义

    1.数组的定义 数组:一组能够储存相同数据类型值的变量的集合. 2.数组的赋值方式 (1)使用默认的初始值来初始化数组中的每一个元素 语法:数组元素类型[]数组名 = new数组元素类型[数组中元素的 ...

  9. Python 获取MySql某个表所有字段名

    在使用python导出数据库中数据的时候,往往除了插入的数据以外,还有表字段等信息需要导出,查阅了资料后发现了2种方法 第一种:在mysql自带的表里查询,这个表保存了每张表的字段信息,可以用pymy ...

  10. Windows10 JDK1.8安装及环境变量配置

    一.下载JDK1.8: 下载地址:https://www.oracle.com/java/technologies/javase-jdk8-downloads.html  二.安装步骤: 我们通常选择 ...